Об этом курсе
5.0
Оценки: 5
Рецензии: 3
This project completer has proven a deep understanding on massive parallel data processing, data exploration and visualization, advanced machine learning and deep learning and how to apply his knowledge in a real-world practical use case where he justifies architectural decisions, proves understanding the characteristics of different algorithms, frameworks and technologies and how they impact model performance and scalability. ...
Globe

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Calendar

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Advanced Level

Продвинутый уровень

Clock

Approx. 16 hours to complete

Предполагаемая нагрузка: 6 hours/week...
Comment Dots

English

Субтитры: English...
Globe

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Calendar

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Advanced Level

Продвинутый уровень

Clock

Approx. 16 hours to complete

Предполагаемая нагрузка: 6 hours/week...
Comment Dots

English

Субтитры: English...

Программа курса: что вы изучите

Week
1
Clock
3 ч. на завершение

Week 1 - Identify DataSet and UseCase

In this module, the basic process model used for this capstone project is introduced. Furthermore, the learner is required to identify a practical use case and data set...
Reading
1 видео (всего 2 мин.), 6 материалов для самостоятельного изучения, 2 тестов
Video1 видео
Reading6 материала для самостоятельного изучения
A warm welcome10мин
Overview of Architectural Methodologies for DataScience10мин
Lightweight IBM Cloud Garage Method for Data Science10мин
Data Sources and Use Cases10мин
Initial Data Exploration10мин
Architectural Decisions Document (ADD)10мин
Quiz1 практическое упражнение
Milestones Checklist Week 1мин
Week
2
Clock
3 ч. на завершение

Week 2 - ETL and Feature Creation

This module emphasizes on the importance of ETL, data cleansing and feature creation as a preliminary step in ever data science project ...
Reading
3 материалов для самостоятельного изучения, 2 тестов
Reading3 материала для самостоятельного изучения
Extract Transform Load (ETL)10мин
Data Cleansing10мин
Feature Engineering10мин
Quiz1 практическое упражнение
Milestones Checklist Week 2мин
Week
3
Clock
2 ч. на завершение

Week 3 - Model Definition and Training

This module emphasizes on model selection based on use case and data set. It is important to understand how those two factors impact choice of a useful model algorithm. ...
Reading
2 материалов для самостоятельного изучения, 2 тестов
Reading2 материала для самостоятельного изучения
Model Definition10мин
Model Training10мин
Quiz1 практическое упражнение
Milestones Checklist Week 3мин
Week
4
Clock
5 ч. на завершение

Model Evaluation, Tuning, Deployment and Documentation

One a model is trained it is important to assess its performance using an appropriate metric. In addition, once the model is finished, it has to be made consumable by business stakeholders in an appropriate way ...
Reading
5 материалов для самостоятельного изучения, 3 тестов
Reading5 материала для самостоятельного изучения
Model Evaluation10мин
Model Deployment10мин
Data Product (optional)10мин
Create ADD - Architectural Decisions Document10мин
Create a Video of your final presentation10мин
Quiz1 практическое упражнение
Milestones Checklist Week 4мин

Преподаватель

Romeo Kienzler

Chief Data Scientist, Course Lead
IBM Watson IoT

О IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

О специализации ''Advanced Data Science with IBM'

As a coursera certified specialization completer you will have a proven deep understanding on massive parallel data processing, data exploration and visualization, and advanced machine learning & deep learning. You'll understand the mathematical foundations behind all machine learning & deep learning algorithms. You can apply knowledge in practical use cases, justify architectural decisions, understand the characteristics of different algorithms, frameworks & technologies & how they impact model performance & scalability. If you choose to take this specialization and earn the Coursera specialization certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging....
Advanced Data Science with IBM

Часто задаваемые вопросы

  • Once you enroll for a Certificate, you’ll have access to all videos, quizzes, and programming assignments (if applicable). Peer review assignments can only be submitted and reviewed once your session has begun. If you choose to explore the course without purchasing, you may not be able to access certain assignments.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

Остались вопросы? Посетите Центр поддержки учащихся.