This course aims to help you to draw better statistical inferences from empirical research. First, we will discuss how to correctly interpret p-values, effect sizes, confidence intervals, Bayes Factors, and likelihood ratios, and how these statistics answer different questions you might be interested in. Then, you will learn how to design experiments where the false positive rate is controlled, and how to decide upon the sample size for your study, for example in order to achieve high statistical power. Subsequently, you will learn how to interpret evidence in the scientific literature given widespread publication bias, for example by learning about p-curve analysis. Finally, we will talk about how to do philosophy of science, theory construction, and cumulative science, including how to perform replication studies, why and how to pre-register your experiment, and how to share your results following Open Science principles.
от партнера


Improving your statistical inferences
Технический университет ЭйндховенаОб этом курсе
Будет ли вашей компании выгодно обучить сотрудников востребованным навыкам?
Попробуйте Coursera для бизнесаПриобретаемые навыки
- Likelihood Function
- Bayesian Statistics
- P-Value
- Statistical Inference
Будет ли вашей компании выгодно обучить сотрудников востребованным навыкам?
Попробуйте Coursera для бизнесаот партнера
Программа курса: что вы изучите
Introduction + Frequentist Statistics
Likelihoods & Bayesian Statistics
Multiple Comparisons, Statistical Power, Pre-Registration
Effect Sizes
Рецензии
- 5 stars88,53 %
- 4 stars9,86 %
- 3 stars1,06 %
- 2 stars0,26 %
- 1 star0,26 %
Лучшие отзывы о курсе IMPROVING YOUR STATISTICAL INFERENCES
Excellent course. The materials were well laid out and explained in an accessible but thorough manner. I've already begun using what I've learned in my current work.
Excellent course. Must take for any students interested in doing scientific research, especially in the domain of the social sciences. Very interesting and informative.
Great course to dig a bit deeper into some very useful statistical concept. 4 starts as many of the contents are not "open" as the course preaches (see Microsoft Office documents or GPower).
Easy to follow, well structured, good references, empathy of presenter. I will recomend this to other friends who made Black Belt certification and still don't have clear what the Pvalue is for.
Часто задаваемые вопросы
Когда я получу доступ к лекциям и заданиям?
Что я получу, оплатив сертификацию?
Можно ли получить финансовую помощь?
In which languages is this course available?
Остались вопросы? Посетите Центр поддержки учащихся.