Chevron Left
Вернуться к Improving your statistical inferences

Отзывы учащихся о курсе Improving your statistical inferences от партнера Технический университет Эйндховена

4.9
звезд
Оценки: 747

О курсе

This course aims to help you to draw better statistical inferences from empirical research. First, we will discuss how to correctly interpret p-values, effect sizes, confidence intervals, Bayes Factors, and likelihood ratios, and how these statistics answer different questions you might be interested in. Then, you will learn how to design experiments where the false positive rate is controlled, and how to decide upon the sample size for your study, for example in order to achieve high statistical power. Subsequently, you will learn how to interpret evidence in the scientific literature given widespread publication bias, for example by learning about p-curve analysis. Finally, we will talk about how to do philosophy of science, theory construction, and cumulative science, including how to perform replication studies, why and how to pre-register your experiment, and how to share your results following Open Science principles. In practical, hands on assignments, you will learn how to simulate t-tests to learn which p-values you can expect, calculate likelihood ratio's and get an introduction the binomial Bayesian statistics, and learn about the positive predictive value which expresses the probability published research findings are true. We will experience the problems with optional stopping and learn how to prevent these problems by using sequential analyses. You will calculate effect sizes, see how confidence intervals work through simulations, and practice doing a-priori power analyses. Finally, you will learn how to examine whether the null hypothesis is true using equivalence testing and Bayesian statistics, and how to pre-register a study, and share your data on the Open Science Framework. All videos now have Chinese subtitles. More than 30.000 learners have enrolled so far! If you enjoyed this course, I can recommend following it up with me new course "Improving Your Statistical Questions"...

Лучшие рецензии

MS

13 мая 2021 г.

Eye opening course. My first introduction to some of the issues surrounding p-values as well as how to better utilize them and what they truly represent. My first introduction to effect sizes as well.

AB

23 февр. 2020 г.

Easy to follow, well structured, good references, empathy of presenter. I will recomend this to other friends who made Black Belt certification and still don't have clear what the Pvalue is for.

Фильтр по:

1–25 из 244 отзывов о курсе Improving your statistical inferences

автор: Shan X

25 июня 2018 г.

автор: Daniel A L

25 мая 2019 г.

автор: Bartek

30 окт. 2016 г.

автор: Luis A

21 авг. 2017 г.

автор: Stefan W

28 дек. 2016 г.

автор: Alex G

26 окт. 2016 г.

автор: Julien B

21 июля 2019 г.

автор: Pepe V C

1 июня 2019 г.

автор: Yonathan M P

8 июня 2019 г.

автор: Aicha M A N

12 нояб. 2020 г.

автор: Farhan N

21 мая 2018 г.

автор: Benedikt L

22 июня 2018 г.

автор: Andreas K

15 июля 2019 г.

автор: Constantin Y P

17 мая 2017 г.

автор: Wessel G

16 авг. 2022 г.

автор: Nicholas J

23 янв. 2018 г.

автор: Maxine S

3 янв. 2022 г.

автор: Oviya M

18 июля 2020 г.

автор: Răzvan J

30 мая 2017 г.

автор: Jason L

7 дек. 2018 г.

автор: Helén L

17 авг. 2018 г.

автор: Tyson W B

23 февр. 2018 г.

автор: zuzana n

18 сент. 2020 г.

автор: Oaní d S d C

16 авг. 2018 г.

автор: Yoel S

15 сент. 2018 г.