Chevron Left
Вернуться к State Estimation and Localization for Self-Driving Cars

Отзывы учащихся о курсе State Estimation and Localization for Self-Driving Cars от партнера Торонтский университет

Оценки: 769

О курсе

Welcome to State Estimation and Localization for Self-Driving Cars, the second course in University of Toronto’s Self-Driving Cars Specialization. We recommend you take the first course in the Specialization prior to taking this course. This course will introduce you to the different sensors and how we can use them for state estimation and localization in a self-driving car. By the end of this course, you will be able to: - Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares - Develop a model for typical vehicle localization sensors, including GPS and IMUs - Apply extended and unscented Kalman Filters to a vehicle state estimation problem - Understand LIDAR scan matching and the Iterative Closest Point algorithm - Apply these tools to fuse multiple sensor streams into a single state estimate for a self-driving car For the final project in this course, you will implement the Error-State Extended Kalman Filter (ES-EKF) to localize a vehicle using data from the CARLA simulator. This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics. To succeed in this course, you should have programming experience in Python 3.0, familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses), Statistics (Gaussian probability distributions), Calculus and Physics (forces, moments, inertia, Newton's Laws)....

Лучшие рецензии


29 окт. 2019 г.

best online course so far that explains kalman filter and estimation methods with examples not just focusing on theoretical ,Thanks to the Dr's and course staff who worked hard to produce this course.


9 февр. 2021 г.

The course is informative and well constructed for learners. The final project is designed well so that we can build sensor fusion tools while applying what we have learned from this course.

Фильтр по:

1–25 из 121 отзывов о курсе State Estimation and Localization for Self-Driving Cars

автор: Jon H

4 июня 2019 г.

автор: MachWave

1 июля 2019 г.

автор: Rade

7 июня 2019 г.

автор: Wit S

14 окт. 2019 г.

автор: Asad Q

9 февр. 2020 г.

автор: Guruprasad M H

29 апр. 2019 г.

автор: Remon G

12 авг. 2019 г.

автор: River L

27 апр. 2019 г.

автор: Joachim S

11 июня 2019 г.

автор: Hemanth K K

23 мая 2021 г.

автор: Carlos A

19 мар. 2021 г.

автор: Muhammad H S H J I

12 авг. 2019 г.

автор: carlos s

5 дек. 2019 г.

автор: anis

6 дек. 2019 г.

автор: Georgios T

30 июля 2019 г.

автор: Yuwei W

17 нояб. 2019 г.

автор: D.B

5 апр. 2020 г.

автор: Kasra D

12 окт. 2020 г.

автор: Andrea B

16 июня 2020 г.

автор: Dane R

6 июля 2020 г.

автор: Mukund C

8 июня 2020 г.

автор: Qi W

11 янв. 2021 г.

автор: Parikshit M

31 мар. 2020 г.

автор: Yashasvi S

29 июня 2020 г.

автор: Ananth R

30 июля 2019 г.