Об этом курсе
4.7
Оценки: 2,584
Рецензии: 581
Специализация
100% онлайн

100% онлайн

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Начальный уровень

Начальный уровень

Часов на завершение

Прибл. 21 часа на выполнение

Предполагаемая нагрузка: 5 weeks of study, 5-7 hours/week...
Доступные языки

Английский

Субтитры: Английский, Корейский

Приобретаемые навыки

StatisticsR ProgrammingRstudioExploratory Data Analysis
Специализация
100% онлайн

100% онлайн

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Начальный уровень

Начальный уровень

Часов на завершение

Прибл. 21 часа на выполнение

Предполагаемая нагрузка: 5 weeks of study, 5-7 hours/week...
Доступные языки

Английский

Субтитры: Английский, Корейский

Программа курса: что вы изучите

Неделя
1
Часов на завершение
12 минуты на завершение

About Introduction to Probability and Data

<p>This course introduces you to sampling and exploring data, as well as basic probability theory. You will examine various types of sampling methods and discuss how such methods can impact the utility of a data analysis. The concepts in this module will serve as building blocks for our later courses.<p>Each lesson comes with a set of learning objectives that will be covered in a series of short videos. Supplementary readings and practice problems will also be suggested from <a href="https://leanpub.com/openintro-statistics/" target="_blank">OpenIntro Statistics, 3rd Edition</a> (a free online introductory statistics textbook, that I co-authored). There will be weekly quizzes designed to assess your learning and mastery of the material covered that week in the videos. In addition, each week will also feature a lab assignment, in which you will use R to apply what you are learning to real data. There will also be a data analysis project designed to enable you to answer research questions of your own choosing.<p>Since this is a Coursera course, you are welcome to participate as much or as little as you’d like, though I hope that you will begin by participating fully. One of the most rewarding aspects of a Coursera course is participation in forum discussions about the course materials. Please take advantage of other students' feedback and insight and contribute your own perspective where you see fit to do so. You can also check out the <a href="https://www.coursera.org/learn/probability-intro/resources/crMc4" target="_blank">resource page</a> listing useful resources for this course. <p>Thank you for joining the Introduction to Probability and Data community! Say hello in the Discussion Forums. We are looking forward to your participation in the course.</p>...
Reading
1 video (Total 2 min), 1 материал для самостоятельного изучения
Video1 видео
Reading1 материал для самостоятельного изучения
More about Introduction to Probability and Data10мин
Часов на завершение
2 ч. на завершение

Introduction to Data

<p>Welcome to Introduction to Probability and Data! I hope you are just as excited about this course as I am! In the next five weeks, we will learn about designing studies, explore data via numerical summaries and visualizations, and learn about rules of probability and commonly used probability distributions. If you have any questions, feel free to post them on <a href="https://www.coursera.org/learn/probability-intro/module/rQ9Al/discussions?sort=lastActivityAtDesc&page=1" target="_blank"><b>this module's forum</b></a> and discuss with your peers! To get started, view the <a href="https://www.coursera.org/learn/probability-intro/supplement/rooeY/lesson-learning-objectives" target="_blank"><b>learning objectives</b></a> of Lesson 1 in this module.</p>...
Reading
7 videos (Total 30 min), 5 материалов для самостоятельного изучения, 3 тестов
Video7 видео
Data Basics5мин
Observational Studies & Experiments4мин
Sampling and sources of bias8мин
Experimental Design2мин
(Spotlight) Random Sample Assignment3мин
DataCamp Instructions2мин
Reading5 материала для самостоятельного изучения
Lesson Learning Objectives10мин
Suggested Readings and Practice10мин
About Lesson Choices (Read Before Selection)10мин
Week 1 Lab Instructions (RStudio)10мин
Week 1 Lab Instructions (DataCamp)10мин
Quiz3 практического упражнения
Week 1 Practice Quiz10мин
Week 1 Quiz14мин
Week 1 Lab: Introduction to R and RStudio16мин
Неделя
2
Часов на завершение
3 ч. на завершение

Exploratory Data Analysis and Introduction to Inference

<p>Welcome to Week 2 of Introduction to Probability and Data! Hope you enjoyed materials from Week 1. This week we will delve into numerical and categorical data in more depth, and introduce inference. </p>...
Reading
7 videos (Total 46 min), 5 материалов для самостоятельного изучения, 3 тестов
Video7 видео
Measures of Center4мин
Measures of Spread6мин
Robust Statistics1мин
Transforming Data3мин
Exploring Categorical Variables8мин
Introduction to Inference12мин
Reading5 материала для самостоятельного изучения
Lesson Learning Objectives10мин
Lesson Learning Objectives10мин
Suggested Readings and Practice10мин
Week 2 Lab Instructions (RStudio)10мин
Week 2 Lab Instructions (DataCamp)10мин
Quiz3 практического упражнения
Week 2 Practice Quiz10мин
Week 2 Quiz12мин
Week 2 Lab: Introduction to Data20мин
Неделя
3
Часов на завершение
3 ч. на завершение

Introduction to Probability

<p>Welcome to Week 3 of Introduction to Probability and Data! Last week we explored numerical and categorical data. This week we will discuss probability, conditional probability, the Bayes’ theorem, and provide a light introduction to Bayesian inference. </p><p>Thank you for your enthusiasm and participation, and have a great week! I’m looking forward to working with you on the rest of this course. </p>...
Reading
9 videos (Total 82 min), 5 материалов для самостоятельного изучения, 3 тестов
Video9 видео
Disjoint Events + General Addition Rule9мин
Independence9мин
Probability Examples9мин
(Spotlight) Disjoint vs. Independent2мин
Conditional Probability12мин
Probability Trees10мин
Bayesian Inference14мин
Examples of Bayesian Inference7мин
Reading5 материала для самостоятельного изучения
Lesson Learning Objectives10мин
Lesson Learning Objectives10мин
Suggested Readings and Practice10мин
Week 3 Lab Instructions (RStudio)10мин
Week 3 Lab Instructions (DataCamp)10мин
Quiz3 практического упражнения
Week 3 Practice Quiz6мин
Week 3 Quiz10мин
Week 3 Lab: Probability10мин
Неделя
4
Часов на завершение
2 ч. на завершение

Probability Distributions

<p>Great work so far! Welcome to Week 4 -- the last content week of Introduction to Probability and Data! This week we will introduce two probability distributions: the normal and the binomial distributions in particular. As usual, you can evaluate your knowledge in this week's quiz. There will be <b>no labs</b> for this week. Please don't hesitate to post any questions, discussions and related topics on <a href="https://www.coursera.org/learn/probability-intro/module/VdVNg/discussions?sort=lastActivityAtDesc&page=1" target="_blank"><b>this week's forum</b></a>.</p>...
Reading
6 videos (Total 67 min), 4 материалов для самостоятельного изучения, 2 тестов
Video6 видео
Evaluating the Normal Distribution2мин
Working with the Normal Distribution5мин
Binomial Distribution17мин
Normal Approximation to Binomial14мин
Working with the Binomial Distribution9мин
Reading4 материала для самостоятельного изучения
Lesson Learning Objectives10мин
Lesson Learning Objectives10мин
Suggested Readings and Practice10мин
Data Analysis Project Example10мин
Quiz2 практического упражнения
Week 4 Practice Quiz14мин
Week 4 Quiz14мин
4.7
Рецензии: 581Chevron Right
Формирование карьерного пути

29%

начал новую карьеру, пройдя эти курсы
Карьерные преимущества

83%

получил значимые преимущества в карьере благодаря этому курсу
Продвижение по карьерной лестнице

14%

стал больше зарабатывать или получил повышение

Лучшие рецензии

автор: AAJan 24th 2018

This course literally taught me a lot, the concepts were beautifully explained but the way it was delivered and overall exercises and the difficulty of problems made it more challenging and enjoying.

автор: HDMar 31st 2018

The tutor makes it really simple. The given examples really helped to understand the concepts and apply it to a wide range of problems. Thank you for this. Wish I could complete the assignments too.

Преподаватель

Avatar

Mine Çetinkaya-Rundel

Associate Professor of the Practice
Department of Statistical Science

О Duke University

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world....

О специализации ''Statistics with R'

In this Specialization, you will learn to analyze and visualize data in R and create reproducible data analysis reports, demonstrate a conceptual understanding of the unified nature of statistical inference, perform frequentist and Bayesian statistical inference and modeling to understand natural phenomena and make data-based decisions, communicate statistical results correctly, effectively, and in context without relying on statistical jargon, critique data-based claims and evaluated data-based decisions, and wrangle and visualize data with R packages for data analysis. You will produce a portfolio of data analysis projects from the Specialization that demonstrates mastery of statistical data analysis from exploratory analysis to inference to modeling, suitable for applying for statistical analysis or data scientist positions....
Statistics with R

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Записавшись на курс, вы получите доступ ко всем курсам в специализации, а также возможность получить сертификат о его прохождении. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

  • No. Completion of a Coursera course does not earn you academic credit from Duke; therefore, Duke is not able to provide you with a university transcript. However, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.

Остались вопросы? Посетите Центр поддержки учащихся.