Специализация: общие сведения
Недавно просмотрено: 79,236

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Начальный уровень

Прибл. 7 месяца на выполнение

Около 4 ч/неделю

Английский

Субтитры: Английский, Корейский

Приобретаемые навыки

Bayesian StatisticsLinear RegressionStatistical InferenceR Programming

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Начальный уровень

Прибл. 7 месяца на выполнение

Около 4 ч/неделю

Английский

Субтитры: Английский, Корейский

Специализация: принцип работы

Пройти курсы

Специализация Coursera — это серия курсов, помогающих в совершенстве овладеть определенным навыком. Можно сразу записаться на специализацию или просмотреть курсы, из которых она состоит и выбрать тот, с которого вы хотите начать. Подписываясь на курс, который входит в специализацию, вы автоматически подписываетесь на всю специализацию. Можно завершить всего один курс, а потом сделать паузу в обучении или в любой момент отменить подписку. Отслеживайте свои курсы и прогресс на панели управления учащегося.

Практический проект

В каждой специализации есть практический проект, который нужно успешно выполнить, чтобы завершить специализацию и получить сертификат. Если для практического проекта в специализации предусмотрен отдельный курс, прежде чем начать его, необходимо завершить все остальные курсы.

Получите сертификат

Когда вы пройдете все курсы и завершите практический проект, вы получите сертификат, которым можно поделиться с потенциальными работодателями и коллегами.

how it works

Специализация включает несколько курсов: 5

Курс1

Introduction to Probability and Data

4.7
Оценки: 3,077
Рецензии: 687

This course introduces you to sampling and exploring data, as well as basic probability theory and Bayes' rule. You will examine various types of sampling methods, and discuss how such methods can impact the scope of inference. A variety of exploratory data analysis techniques will be covered, including numeric summary statistics and basic data visualization. You will be guided through installing and using R and RStudio (free statistical software), and will use this software for lab exercises and a final project. The concepts and techniques in this course will serve as building blocks for the inference and modeling courses in the Specialization.

...
Курс2

Статистика вывода

4.8
Оценки: 1,393
Рецензии: 258

This course covers commonly used statistical inference methods for numerical and categorical data. You will learn how to set up and perform hypothesis tests, interpret p-values, and report the results of your analysis in a way that is interpretable for clients or the public. Using numerous data examples, you will learn to report estimates of quantities in a way that expresses the uncertainty of the quantity of interest. You will be guided through installing and using R and RStudio (free statistical software), and will use this software for lab exercises and a final project. The course introduces practical tools for performing data analysis and explores the fundamental concepts necessary to interpret and report results for both categorical and numerical data

...
Курс3

Linear Regression and Modeling

4.7
Оценки: 974
Рецензии: 174

This course introduces simple and multiple linear regression models. These models allow you to assess the relationship between variables in a data set and a continuous response variable. Is there a relationship between the physical attractiveness of a professor and their student evaluation scores? Can we predict the test score for a child based on certain characteristics of his or her mother? In this course, you will learn the fundamental theory behind linear regression and, through data examples, learn to fit, examine, and utilize regression models to examine relationships between multiple variables, using the free statistical software R and RStudio.

...
Курс4

Байесовская статистика

3.9
Оценки: 555
Рецензии: 166

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction. We assume learners in this course have background knowledge equivalent to what is covered in the earlier three courses in this specialization: "Introduction to Probability and Data," "Inferential Statistics," and "Linear Regression and Modeling."

...

Преподаватели

Avatar

Mine Çetinkaya-Rundel

Associate Professor of the Practice
Department of Statistical Science
Avatar

David Banks

Professor of the Practice
Statistical Science
Avatar

Colin Rundel

Assistant Professor of the Practice
Statistical Science
Avatar

Merlise A Clyde

Professor
Department of Statistical Science

О Университет Дьюка

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world....

Часто задаваемые вопросы

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Basic math, no programming experience required. A genuine interest in data analysis is a plus!

    In the later courses in the Specialization, we assume knowledge and skills equivalent to those which would have been gained in the prior courses (for example: if you decide to take course four, Bayesian Statistics, without taking the prior three courses we assume you have knowledge of frequentist statistics and R equivalent to what is taught in the first three courses).

  • Yes.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • In this specialization, R is a requirement, and the labs have been enhanced and revised from the previous course. Success in the fourth course and the capstone project will depend heavily on successfully completing the first three courses in this specialization. Therefore, we require all students complete all courses to obtain the certificate.

  • Yes. You will need R and RStudio. Both are free and publicly available. You will need administrator access to your computer to install this software.

Остались вопросы? Посетите Центр поддержки учащихся.