Об этом курсе
4.9
Оценки: 87,617
Рецензии: 22,470
100% онлайн

100% онлайн

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Часов на завершение

Прибл. 55 часа на выполнение

Предполагаемая нагрузка: 7 hours/week...
Доступные языки

Английский

Субтитры: Английский, Китайский (упрощенное письмо), Иврит, Испанский, Хинди, Японский...

Приобретаемые навыки

Logistic RegressionArtificial Neural NetworkMachine Learning (ML) AlgorithmsMachine Learning
100% онлайн

100% онлайн

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Часов на завершение

Прибл. 55 часа на выполнение

Предполагаемая нагрузка: 7 hours/week...
Доступные языки

Английский

Субтитры: Английский, Китайский (упрощенное письмо), Иврит, Испанский, Хинди, Японский...

Программа курса: что вы изучите

Неделя
1
Часов на завершение
2 ч. на завершение

Introduction

Welcome to Machine Learning! In this module, we introduce the core idea of teaching a computer to learn concepts using data—without being explicitly programmed. The Course Wiki is under construction. Please visit the resources tab for the most complete and up-to-date information....
Reading
5 videos (Total 42 min), 9 материалов для самостоятельного изучения, 1 тест
Video5 видео
Welcome6мин
What is Machine Learning?7мин
Supervised Learning12мин
Unsupervised Learning14мин
Reading9 материала для самостоятельного изучения
Machine Learning Honor Code8мин
What is Machine Learning?5мин
How to Use Discussion Forums4мин
Supervised Learning4мин
Unsupervised Learning3мин
Who are Mentors?3мин
Get to Know Your Classmates8мин
Frequently Asked Questions11мин
Lecture Slides20мин
Quiz1 практическое упражнение
Introduction10мин
Часов на завершение
2 ч. на завершение

Linear Regression with One Variable

Linear regression predicts a real-valued output based on an input value. We discuss the application of linear regression to housing price prediction, present the notion of a cost function, and introduce the gradient descent method for learning....
Reading
7 videos (Total 70 min), 8 материалов для самостоятельного изучения, 1 тест
Video7 видео
Cost Function8мин
Cost Function - Intuition I11мин
Cost Function - Intuition II8мин
Gradient Descent11мин
Gradient Descent Intuition11мин
Gradient Descent For Linear Regression10мин
Reading8 материала для самостоятельного изучения
Model Representation3мин
Cost Function3мин
Cost Function - Intuition I4мин
Cost Function - Intuition II3мин
Gradient Descent3мин
Gradient Descent Intuition3мин
Gradient Descent For Linear Regression6мин
Lecture Slides20мин
Quiz1 практическое упражнение
Linear Regression with One Variable10мин
Часов на завершение
2 ч. на завершение

Linear Algebra Review

This optional module provides a refresher on linear algebra concepts. Basic understanding of linear algebra is necessary for the rest of the course, especially as we begin to cover models with multiple variables....
Reading
6 videos (Total 61 min), 7 материалов для самостоятельного изучения, 1 тест
Video6 видео
Addition and Scalar Multiplication6мин
Matrix Vector Multiplication13мин
Matrix Matrix Multiplication11мин
Matrix Multiplication Properties9мин
Inverse and Transpose11мин
Reading7 материала для самостоятельного изучения
Matrices and Vectors2мин
Addition and Scalar Multiplication3мин
Matrix Vector Multiplication2мин
Matrix Matrix Multiplication2мин
Matrix Multiplication Properties2мин
Inverse and Transpose3мин
Lecture Slides10мин
Quiz1 практическое упражнение
Linear Algebra10мин
Неделя
2
Часов на завершение
3 ч. на завершение

Linear Regression with Multiple Variables

What if your input has more than one value? In this module, we show how linear regression can be extended to accommodate multiple input features. We also discuss best practices for implementing linear regression....
Reading
8 videos (Total 65 min), 16 материалов для самостоятельного изучения, 1 тест
Video8 видео
Gradient Descent for Multiple Variables5мин
Gradient Descent in Practice I - Feature Scaling8мин
Gradient Descent in Practice II - Learning Rate8мин
Features and Polynomial Regression7мин
Normal Equation16мин
Normal Equation Noninvertibility5мин
Working on and Submitting Programming Assignments3мин
Reading16 материала для самостоятельного изучения
Setting Up Your Programming Assignment Environment8мин
Accessing MATLAB Online and Uploading the Exercise Files3мин
Installing Octave on Windows3мин
Installing Octave on Mac OS X (10.10 Yosemite and 10.9 Mavericks and Later)10мин
Installing Octave on Mac OS X (10.8 Mountain Lion and Earlier)3мин
Installing Octave on GNU/Linux7мин
More Octave/MATLAB resources10мин
Multiple Features3мин
Gradient Descent For Multiple Variables2мин
Gradient Descent in Practice I - Feature Scaling3мин
Gradient Descent in Practice II - Learning Rate4мин
Features and Polynomial Regression3мин
Normal Equation3мин
Normal Equation Noninvertibility2мин
Programming tips from Mentors10мин
Lecture Slides20мин
Quiz1 практическое упражнение
Linear Regression with Multiple Variables10мин
Часов на завершение
5 ч. на завершение

Octave/Matlab Tutorial

This course includes programming assignments designed to help you understand how to implement the learning algorithms in practice. To complete the programming assignments, you will need to use Octave or MATLAB. This module introduces Octave/Matlab and shows you how to submit an assignment....
Reading
6 videos (Total 80 min), 1 материал для самостоятельного изучения, 2 тестов
Video6 видео
Moving Data Around16мин
Computing on Data13мин
Plotting Data9мин
Control Statements: for, while, if statement12мин
Vectorization13мин
Reading1 материал для самостоятельного изучения
Lecture Slides10мин
Quiz1 практическое упражнение
Octave/Matlab Tutorial10мин
Неделя
3
Часов на завершение
2 ч. на завершение

Logistic Regression

Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logistic regression, and the application of logistic regression to multi-class classification. ...
Reading
7 videos (Total 71 min), 8 материалов для самостоятельного изучения, 1 тест
Video7 видео
Hypothesis Representation7мин
Decision Boundary14мин
Cost Function10мин
Simplified Cost Function and Gradient Descent10мин
Advanced Optimization14мин
Multiclass Classification: One-vs-all6мин
Reading8 материала для самостоятельного изучения
Classification2мин
Hypothesis Representation3мин
Decision Boundary3мин
Cost Function3мин
Simplified Cost Function and Gradient Descent3мин
Advanced Optimization3мин
Multiclass Classification: One-vs-all3мин
Lecture Slides10мин
Quiz1 практическое упражнение
Logistic Regression10мин
Часов на завершение
4 ч. на завершение

Regularization

Machine learning models need to generalize well to new examples that the model has not seen in practice. In this module, we introduce regularization, which helps prevent models from overfitting the training data. ...
Reading
4 videos (Total 39 min), 5 материалов для самостоятельного изучения, 2 тестов
Video4 видео
Cost Function10мин
Regularized Linear Regression10мин
Regularized Logistic Regression8мин
Reading5 материала для самостоятельного изучения
The Problem of Overfitting3мин
Cost Function3мин
Regularized Linear Regression3мин
Regularized Logistic Regression3мин
Lecture Slides10мин
Quiz1 практическое упражнение
Regularization10мин
Неделя
4
Часов на завершение
5 ч. на завершение

Neural Networks: Representation

Neural networks is a model inspired by how the brain works. It is widely used today in many applications: when your phone interprets and understand your voice commands, it is likely that a neural network is helping to understand your speech; when you cash a check, the machines that automatically read the digits also use neural networks. ...
Reading
7 videos (Total 63 min), 6 материалов для самостоятельного изучения, 2 тестов
Video7 видео
Neurons and the Brain7мин
Model Representation I12мин
Model Representation II11мин
Examples and Intuitions I7мин
Examples and Intuitions II10мин
Multiclass Classification3мин
Reading6 материала для самостоятельного изучения
Model Representation I6мин
Model Representation II6мин
Examples and Intuitions I2мин
Examples and Intuitions II3мин
Multiclass Classification3мин
Lecture Slides10мин
Quiz1 практическое упражнение
Neural Networks: Representation10мин
4.9
Рецензии: 22,470Chevron Right
Формирование карьерного пути

39%

начал новую карьеру, пройдя эти курсы
Карьерные преимущества

83%

получил значимые преимущества в карьере благодаря этому курсу

Лучшие рецензии

автор: VBOct 3rd 2016

Everything is great about this course. Dr. Ng dumbs is it down with the complex math involved. He explained everything clearly, slowly and softly. Now I can say I know something about Machine Learning

автор: MMOct 8th 2017

This course was my first contact with ML and it was a good surprise.\n\nThe classes were very clear and it was very useful for me.\n\nI strongly recommend for those who want to learn the basics of ML.

Преподаватель

Avatar

Andrew Ng

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain

О Stanford University

The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States....

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Оплатив сертификацию, вы получите доступ ко всем материалам курса, включая оцениваемые задания. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

Остались вопросы? Посетите Центр поддержки учащихся.