Deep Learning is the go-to technique for many applications, from natural language processing to biomedical. Deep learning can handle many different types of data such as images, texts, voice/sound, graphs and so on. This course will cover the basics of DL including how to build and train multilayer perceptron, convolutional neural networks (CNNs), recurrent neural networks (RNNs), autoencoders (AE) and generative adversarial networks (GANs). The course includes several hands-on projects, including cancer detection with CNNs, RNNs on disaster tweets, and generating dog images with GANs.
Этот курс входит в специализацию ''Специализация Machine Learning: Theory and Hands-on Practice with Python'

Об этом курсе
Calculus, Linear algebra, Python, NumPy, Pandas, Matplotlib, and Scikit-learn. Familiarity with classic Supervised and Unsupervised Learning.
Чему вы научитесь
Apply different optimization methods while training and explain different behavior.
Use cloud tools and deep learning libraries to implement CNN architecture and train for image classification tasks.
Apply deep learning package to sequential data, build models, train, and tune.
Приобретаемые навыки
- Deep Learning
- Artificial Neural Network
- Convolutional Neural Network
- Unsupervised Deep Learning
- Recurrent Neural Network
Calculus, Linear algebra, Python, NumPy, Pandas, Matplotlib, and Scikit-learn. Familiarity with classic Supervised and Unsupervised Learning.
от партнера
Сделайте шаг навстречу диплому магистра.
Программа курса: что вы изучите
Deep Learning Introduction, Multilayer Perceptron
Training Neural Networks
Deep Learning on Images
Deep Learning on Sequential Data
Специализация Machine Learning: Theory and Hands-on Practice with Python: общие сведения

Часто задаваемые вопросы
Когда я получу доступ к лекциям и заданиям?
Что я получу, оформив подписку на специализацию?
Можно ли получить финансовую помощь?
Остались вопросы? Посетите Центр поддержки учащихся.