Chevron Left
Вернуться к Deep Learning Applications for Computer Vision

Отзывы учащихся о курсе Deep Learning Applications for Computer Vision от партнера Колорадский университет в Боулдере

4.8
звезд
Оценки: 25
Рецензии: 6

О курсе

This course can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics, and statistics. Learn more about the MS-DS program at https://www.coursera.org/degrees/master-of-science-data-science-boulder. In this course, you’ll be learning about Computer Vision as a field of study and research. First we’ll be exploring several Computer Vision tasks and suggested approaches, from the classic Computer Vision perspective. Then we’ll introduce Deep Learning methods and apply them to some of the same problems. We will analyze the results and discuss advantages and drawbacks of both types of methods. We'll use tutorials to let you explore hands-on some of the modern machine learning tools and software libraries. Examples of Computer Vision tasks where Deep Learning can be applied include: image classification, image classification with localization, object detection, object segmentation, facial recognition, and activity or pose estimation....

Лучшие рецензии

JP

2 янв. 2022 г.

Great introductory course on deep learning for computer vision.

DM

16 июня 2022 г.

Learnt many things and most exciting was Python code part

Фильтр по:

1–6 из 6 отзывов о курсе Deep Learning Applications for Computer Vision

автор: Carlos A V S

19 мая 2022 г.

Es un curso muy bien explicado, abarcando los conceptos básicos sobre el tema de visión por computador. Fue muy enriquecedor para mi ya que cumplió con mis expectativas. me gustó mucho la parte final que se abordó de manera práctica.

автор: Erik S

5 мар. 2022 г.

P​rofessor Fleming is explaining verry good. Even is most of the concepts were not new to me it was a plessure how it was explained.

автор: Joed H P

3 янв. 2022 г.

G​reat introductory course on deep learning for computer vision.

автор: Allyson D d L

17 июня 2022 г.

Very good introduction but the practical exercises are so easy.

автор: Debasree M

17 июня 2022 г.

Learnt many things and most exciting was Python code part

автор: BERGOR B B

5 мар. 2022 г.

good. Thanks