Chevron Left
Вернуться к Анализ данных с Python

Отзывы учащихся о курсе Анализ данных с Python от партнера IBM

4.7
звезд
Оценки: 8,768
Рецензии: 1,162

О курсе

Learn how to analyze data using Python. This course will take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analysis, create meaningful data visualizations, predict future trends from data, and more! Topics covered: 1) Importing Datasets 2) Cleaning the Data 3) Data frame manipulation 4) Summarizing the Data 5) Building machine learning Regression models 6) Building data pipelines Data Analysis with Python will be delivered through lecture, lab, and assignments. It includes following parts: Data Analysis libraries: will learn to use Pandas, Numpy and Scipy libraries to work with a sample dataset. We will introduce you to pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. Then we will introduce you to another open-source library, scikit-learn, and we will use some of its machine learning algorithms to build smart models and make cool predictions. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....

Лучшие рецензии

RP

Apr 20, 2019

perfect for beginner level. all the concepts with code and parameter wise have been explained excellently. overall best course in making anyone eager to learn from basics to handle advances with ease.

AB

Feb 13, 2020

Great introduction to data manipulation and analysis for common problems that arise in data science. Also allows you to gain a further understanding of Python syntax, specifically the pandas library.

Фильтр по:

976–1000 из 1,158 отзывов о курсе Анализ данных с Python

автор: Shubham M

Feb 27, 2019

Good Course

автор: Isaac N

Dec 03, 2019

Thank's

автор: Veronica A S

Apr 06, 2019

not bad

автор: David H

Mar 07, 2020

good

автор: Oseyi K

Jul 12, 2019

good

автор: Abhishek K S

Apr 23, 2019

good

автор: Vigneshwaran P

Mar 13, 2019

good

автор: Ayo S

Oct 23, 2018

Good

автор: MAHESH K W

Jan 21, 2020

M

автор: Christopher L

Feb 06, 2020

The course itself is good. But the amount of material covered is staggering large compared to the previous 5 classes. Why cram so much into this one class! The material is broad enough that it should be covered in 2 classes not 1. And as I've found in all the classes in this certificate program, there are not enough problems given to help students exercise all they are learning. There should be problem sets (with answer keys) given after each week that helps to drive home the important concepts. These could be optional, but I think it is imperative that students have an opportunity to work through more problems to help lock all of this important information in. There should also be links to places to go to learn more about each presented topic.

And the amount of errors in both the videos and labs is really bad. The class preparers (IBM) have done a horrendous job of catching and fixing the multitude of errors in the videos & labs that simply lead students astray. They have to find some method to get all the material correctly updated quickly and I suggested they should keep an ERRATA PAGE that lists all of the known errors that haven't been fixed yet. This would help them to keep an active punch-list of what has to be corrected and allow students to more easily check if a problem they are seeing is related to incorrect materials without having to scrub the forums to try to find answers. And the forums are not run very well. It generally takes a day to get any answers and the answers are not very thorough and in many cases just wrong. Students need a better way to ask questions when they get confused and the answers should be completely explained and relevant.

автор: piyush g

Jan 03, 2019

Although the labs were pretty solid and helpful, the assignments were equally terrible, lacking depth. it seems like the course developers didn't give much thought to the level of problems being asked in the assignments. Most of the assignments contained 2-3 problems that too with absolute basics. The last few modules felt a bit rushed without proper explanation of some concepts as in why it is being used. Moreover some topics were taught erroneously as one can see from the respective forum discussion of the particular week.

could have been thorough with the assignments with problems solving emphasis like we see in the real world scenario. something like a dataset is provided and some relevant questions are asked based on the data. would have been much more helpful for aspiring data analysts. 3 stars just for the quality of labs.

Good for some one just wanting to dip their toes in the know how of the data science. could have been much better with proper formalization of assignments.

автор: Lyn S

Aug 16, 2019

It's difficult to rate this course, because based on other courses in the data analysis program I had low expectations. I am not sure this is good for a beginner, very poorly explained, the person who wrote it is knowledgeable, but he is not a teacher. You will struggle a lot if you don't already know a fair amount. I had to go to third party internet sources to understand a few things. But, this is pretty cheap and easy. I was looking to learn and to show a credential certificate, this supplies the latter, but not so much the former. The most disappointing issue is the time we have to spend with easily fixable issues, such as code not running, no upload buttons for some test answers. You have to search thru a lot of other discussion issues to find out what to do - after spending hours trying to figure out on your own - very disrespectful. I am ok with typos, but it does show the entire thing is very sloppy.

автор: Shane M W

Jan 03, 2020

Course content is good, but the modules (and in some cases the code itself) definitely need proofreading.

Also, students really should come to this course with a solid grasp of python, and quite a bit of mathematical background in statistics. This course will show you how to use various python packages to perform different kinds of regression (simple linear regression, multivariate regression, polynomial regression). The course does technically introduce the mathematical concepts, but very, very quickly. If it's been a while since your stats class, I would definitely recommend brushing up on the math (at least the Ordinary Least Squares method of regression) to be prepared to take advantage of the content in this course. I think Khan Academy has some good content that might be helpful for review.

автор: Magnus B

Apr 06, 2020

Contents seem relevant, and it gives a decent overview of the process covering data wrangling --> prediction models. There's a lot to digest though, and some rationale is not fully explained. Several sections left me with a lot of unanswered questions where I'm not sure what actions are optional in the process, and which are more essential so to say.

However, the labs struggle with technical problems resulting in users not being able to complete, or even restart, them. In addition to this, the labs haven't been proof read which means the text often being inconsistent with the code. This causing unnecessary confusion for learners.

автор: Sarra A

Dec 21, 2018

I understand the course isn't officially started yet, but it could've been better. There's much to be corrected in the labs as well as the quizzes. The amount of information was a lot, and I'm thankful for the notebooks I have now with steps on doing things, but the material could've been presented in a more cohesive way, this was hard to follow. Also the labs were more intimidating than anticipated (also with many errors). I think this course should be split into two classes instead with more explanation in both.

автор: Brett W

Sep 17, 2019

While the lecture material is well presented and certainly can be followed, the slides are littered with spelling mistakes, and many in important places (code that couldn't run as displayed.) Even the final assignment had formatting issues, and without the discussion forums suggesting removing the confidence interval, it was taking an excessively long time to run. These are generally minor issues that can be ignored, but as a mass, they are embarrassing at best.

автор: Samantha R

Mar 07, 2019

The course content was relevant and quite useful. Its the structure of the course that I didnt like. These are the things that could be improved:

QA before sections are finished does not work - one should first go through the section then the mini QA should start

If one is paying for the course, the slides should be made available for download. Its nice to have reference material for afterward because one forgets things. Even more so if you pay to do a course

автор: Liam M

Jan 18, 2019

So far the other courses in the Data science specialisation contained a final graded assignment. I found them really useful. This course didnt. Also, instead of telling us about all the tools available in the libraries, maybe explaining why we would use them would be better. I could code these functions myself if I understood them, but just using a library seems like it could lead to laziness and a lack of understanding.

автор: Miguel E M

Mar 30, 2020

There where some typos in the labs that could confuse most learners. I didn't feel like the course prepared people for real applications. The final project was quite hard because of this .

But it does give you a wide vision on hoy pandas work and some basic but apparently often used tools.

I see this course as a complement to a more detailed data analysis resource or perhaps as simply as an introductory view.

автор: Carsten K

Mar 11, 2020

Great coverage of topic, but unfortunately comes with several imprecise (or even planely wrong) explanations in the videos. Video quality (style of presentation) is ok, but sometimes missing things are slightly missaligned or questions show up before the topic/sentence is finished - could use some polishing. The hands-on labs are great though - if the notebooks open or the servers are reachable.

автор: Francine S

Mar 25, 2020

The content of courses are great! Went through step by step until a high technical level. Unfortunately, the lab is always out of server, me and others users have been reported the same problems every now and then and nothing changed.

I finished the course without practice the labs and I can't check the exercises to start an own project! Apart from that the whole course is worthwhile.

автор: Felix S

Jul 01, 2019

Material to learn data analysis was very good but had quite a few bugs. It was very annoying to review the assignment of a peer because it is not possible to zoom into the screenshot. Furthermore did I need to flag a person because he had copied screenshots and his notebook was empty or only with screenshots but I was still required to review a second person to complete the course.

автор: Jackson V

Jun 06, 2019

Not as impressed with this course as the previous courses. My main complaints were:

-Seemed to be some gaps between the lectures and labs

-Some lectures seemed rushed through w/ simple questions, and did not prepare well for the lab

-Pre-written code in labs would produce errors

-Spelling mistakes (i.e. the week 5 "Quizz")

-No final project to conclude and summarize up our learning

автор: Chioma J E

Apr 10, 2019

The course was not detailed enough. I think the instructor assumed that people taking the course would know a lot about Regression, Correlation and some other statistical functions, that it was hard to understand or follow at times. Maybe consider 'dumbing' down down the statistical functions so that newbies can also follow.

Overall interesting course. Thank you.

автор: Nikhil B

Feb 25, 2019

This is an excellent course for beginners in the data analysis and data science fields as it explains deep technical concepts in layman terms along with the Python code for the same. However, not a perfect course for someone wanting to go into conceptual depth or wanting to expand their knowledge of analysis in Python beyond use of standard packages.