About this Специализация
Только онлайн-курсы

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Гибкий график

Гибкий график

Установите гибкие сроки сдачи заданий.
Промежуточный уровень

Промежуточный уровень

Basic math including calculus and linear algebra, basic probability theory and statistics, and programming skills in Python.

Часов на завершение

Прибл. 5 месяца на выполнение

Около 9 ч/неделю
Доступные языки

Английский

Субтитры: Английский...

Чему вы научитесь

  • Check

    Compare ML for Finance with ML in Technology (image and speech recognition, robotics, etc.)

  • Check

    Describe linear regression and classification models and methods of their evaluation

  • Check

    Explain how Reinforcement Learning is used for stock trading

  • Check

    Become familiar with popular approaches to modeling market frictions and feedback effects for option trading.

Приобретаемые навыки

Predictive ModellingFinancial EngineeringMachine LearningTensorflowReinforcement Learning
Только онлайн-курсы

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Гибкий график

Гибкий график

Установите гибкие сроки сдачи заданий.
Промежуточный уровень

Промежуточный уровень

Basic math including calculus and linear algebra, basic probability theory and statistics, and programming skills in Python.

Часов на завершение

Прибл. 5 месяца на выполнение

Около 9 ч/неделю
Доступные языки

Английский

Субтитры: Английский...

How the Специализация Works

Пройти курсы

Специализация Coursera — это серия курсов, помогающих в совершенстве овладеть определенным навыком. Можно сразу записаться на специализацию или просмотреть курсы, из которых она состоит и выбрать тот, с которого вы хотите начать. Подписываясь на курс, который входит в специализацию, вы автоматически подписываетесь на всю специализацию. Можно завершить всего один курс, а потом сделать паузу в обучении или в любой момент отменить подписку. Отслеживайте свои курсы и прогресс на панели управления учащегося.

Практический проект

В каждой специализации есть практический проект, который нужно успешно выполнить, чтобы завершить специализацию и получить сертификат. Если для практического проекта в специализации предусмотрен отдельный курс, прежде чем начать его, необходимо завершить все остальные курсы.

Получите сертификат

Когда вы пройдете все курсы и завершите практический проект, вы получите сертификат, которым можно поделиться с потенциальными работодателями и коллегами.

how it works

Специализация включает несколько курсов: 4

Курс1

Guided Tour of Machine Learning in Finance

3.6
Оценки: 195
Рецензии: 81
This course aims at providing an introductory and broad overview of the field of ML with the focus on applications on Finance. Supervised Machine Learning methods are used in the capstone project to predict bank closures. Simultaneously, while this course can be taken as a separate course, it serves as a preview of topics that are covered in more details in subsequent modules of the specialization Machine Learning and Reinforcement Learning in Finance. The goal of Guided Tour of Machine Learning in Finance is to get a sense of what Machine Learning is, what it is for and in how many different financial problems it can be applied to. The course is designed for three categories of students: Practitioners working at financial institutions such as banks, asset management firms or hedge funds Individuals interested in applications of ML for personal day trading Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance Experience with Python (including numpy, pandas, and IPython/Jupyter notebooks), linear algebra, basic probability theory and basic calculus is necessary to complete assignments in this course....
Курс2

Fundamentals of Machine Learning in Finance

3.5
Оценки: 83
Рецензии: 19
The course aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) understanding where the problem one faces lands on a general landscape of available ML methods, (2) understanding which particular ML approach(es) would be most appropriate for resolving the problem, and (3) ability to successfully implement a solution, and assess its performance. A learner with some or no previous knowledge of Machine Learning (ML) will get to know main algorithms of Supervised and Unsupervised Learning, and Reinforcement Learning, and will be able to use ML open source Python packages to design, test, and implement ML algorithms in Finance. Fundamentals of Machine Learning in Finance will provide more at-depth view of supervised, unsupervised, and reinforcement learning, and end up in a project on using unsupervised learning for implementing a simple portfolio trading strategy. The course is designed for three categories of students: Practitioners working at financial institutions such as banks, asset management firms or hedge funds Individuals interested in applications of ML for personal day trading Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance Experience with Python (including numpy, pandas, and IPython/Jupyter notebooks), linear algebra, basic probability theory and basic calculus is necessary to complete assignments in this course....
Курс3

Reinforcement Learning in Finance

3.4
Оценки: 26
Рецензии: 8
This course aims at introducing the fundamental concepts of Reinforcement Learning (RL), and develop use cases for applications of RL for option valuation, trading, and asset management. Prerequisites are the courses "Guided Tour of Machine Learning in Finance" and "Fundamentals of Machine Learning in Finance". Students are expected to know the lognormal process and how it can be simulated. Knowledge of option pricing is not assumed but desirable....
Курс4

Overview of Advanced Methods of Reinforcement Learning in Finance

3.6
Оценки: 16
Рецензии: 2
In the last course of our specialization, Overview of Advanced Methods of Reinforcement Learning in Finance, we will take a deeper look into topics discussed in our third course, Reinforcement Learning in Finance. In particular, we will talk about links between Reinforcement Learning, option pricing and physics, implications of Inverse Reinforcement Learning for modeling market impact and price dynamics, and perception-action cycles in Reinforcement Learning. Finally, we will overview trending and potential applications of Reinforcement Learning for high frequency trading, cryptocurrencies, peer-to-peer lending, and more....

Преподавателя

О New York University Tandon School of Engineering

Tandon offers comprehensive courses in engineering, applied science and technology. Each course is rooted in a tradition of invention and entrepreneurship....

Часто задаваемые вопросы

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Эта специализация не приравнивается к зачету в университетах, однако некоторые вузы принимают сертификаты на свое усмотрение. Дополнительную информацию уточняйте в своем деканате.

  • Prerequisites for the specialization are basic math including calculus and linear algebra, basic probability theory and statistics, and some programming skills in Python. For students that are not familiar with Python and IPython / Jupyter notebooks, reference to tutorials are provided as a part of further reading.

Остались вопросы? Посетите Центр поддержки учащихся.