Специализация: общие сведения
Только онлайн-курсы

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Гибкий график

Гибкий график

Установите гибкие сроки сдачи заданий.
Начальный уровень

Начальный уровень

You should have beginner level experience in Python. Familarity with regression is recommended.

Часов на завершение

Прибл. 8 месяца на выполнение

Около 5 ч/неделю
Доступные языки

Английский

Субтитры: Английский, Французский, Китайский (упрощенное письмо), Греческий, Итальянский, Португальский (бразильский), Вьетнамский, Русский, Турецкий, Иврит, Японский, Арабский...

Чему вы научитесь

  • Check

    Use R to clean, analyze, and visualize data.

  • Check

    Navigate the entire data science pipeline from data acquisition to publication.

  • Check

    Use GitHub to manage data science projects.

  • Check

    Perform regression analysis, least squares and inference using regression models.

Приобретаемые навыки

GithubMachine LearningR ProgrammingRegression Analysis
Только онлайн-курсы

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Гибкий график

Гибкий график

Установите гибкие сроки сдачи заданий.
Начальный уровень

Начальный уровень

You should have beginner level experience in Python. Familarity with regression is recommended.

Часов на завершение

Прибл. 8 месяца на выполнение

Около 5 ч/неделю
Доступные языки

Английский

Субтитры: Английский, Французский, Китайский (упрощенное письмо), Греческий, Итальянский, Португальский (бразильский), Вьетнамский, Русский, Турецкий, Иврит, Японский, Арабский...

Специализация: принцип работы

Пройти курсы

Специализация Coursera — это серия курсов, помогающих в совершенстве овладеть определенным навыком. Можно сразу записаться на специализацию или просмотреть курсы, из которых она состоит и выбрать тот, с которого вы хотите начать. Подписываясь на курс, который входит в специализацию, вы автоматически подписываетесь на всю специализацию. Можно завершить всего один курс, а потом сделать паузу в обучении или в любой момент отменить подписку. Отслеживайте свои курсы и прогресс на панели управления учащегося.

Практический проект

В каждой специализации есть практический проект, который нужно успешно выполнить, чтобы завершить специализацию и получить сертификат. Если для практического проекта в специализации предусмотрен отдельный курс, прежде чем начать его, необходимо завершить все остальные курсы.

Получите сертификат

Когда вы пройдете все курсы и завершите практический проект, вы получите сертификат, которым можно поделиться с потенциальными работодателями и коллегами.

how it works

Специализация включает несколько курсов: 10

Курс1

The Data Scientist’s Toolbox

4.5
Оценки: 17,107
Рецензии: 3,512
In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Курс2

R Programming

4.6
Оценки: 12,743
Рецензии: 2,662
In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment and describe generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, accessing R packages, writing R functions, debugging, profiling R code, and organizing and commenting R code. Topics in statistical data analysis will provide working examples....
Курс3

Getting and Cleaning Data

4.6
Оценки: 5,432
Рецензии: 868
Before you can work with data you have to get some. This course will cover the basic ways that data can be obtained. The course will cover obtaining data from the web, from APIs, from databases and from colleagues in various formats. It will also cover the basics of data cleaning and how to make data “tidy”. Tidy data dramatically speed downstream data analysis tasks. The course will also cover the components of a complete data set including raw data, processing instructions, codebooks, and processed data. The course will cover the basics needed for collecting, cleaning, and sharing data....
Курс4

Exploratory Data Analysis

4.7
Оценки: 4,134
Рецензии: 608
This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data....

Преподавателя

Avatar

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health

Партнеры курса

Industry Partner Logo #0
Industry Partner Logo #1

О Johns Hopkins University

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Часто задаваемые вопросы

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Эта специализация не приравнивается к зачету в университетах, однако некоторые вузы принимают сертификаты на свое усмотрение. Дополнительную информацию уточняйте в своем деканате.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 3-6 months.

  • Each course in the Specialization is offered monthly.

  • Some programming experience (in any language) is recommended. We also suggest a working knowledge of mathematics up to algebra (neither calculus or linear algebra are required).

  • Begin by taking The Data Scientist's Toolbox and Introduction to R Programming, in order. The other courses may be taken in any order, and in parallel if desired.

  • You’ll have a foundational understanding of the field and be prepared to continue studying data science.

  • Yes, you can access the course for free via www.coursera.org/jhu. This will allow you to explore the course, watch lectures, and participate in discussions for free. To be eligible to earn a certificate, you must either pay for enrollment or qualify for financial aid.

Остались вопросы? Посетите Центр поддержки учащихся.