Chevron Left
Вернуться к XG-Boost 101: Used Cars Price Prediction

Отзывы учащихся о курсе XG-Boost 101: Used Cars Price Prediction от партнера Coursera Project Network

4.6
звезд
Оценки: 17
Рецензии: 5

О курсе

In this hands-on project, we will train 3 Machine Learning algorithms namely Multiple Linear Regression, Random Forest Regression, and XG-Boost to predict used cars prices. This project can be used by car dealerships to predict used car prices and understand the key factors that contribute to used car prices. By the end of this project, you will be able to: - Understand the applications of Artificial Intelligence and Machine Learning techniques in the banking industry - Understand the theory and intuition behind XG-Boost Algorithm - Import key Python libraries, dataset, and perform Exploratory Data Analysis. - Perform data visualization using Seaborn, Plotly and Word Cloud. - Standardize the data and split them into train and test datasets.   - Build, train and evaluate XG-Boost, Random Forest, Decision Tree, and Multiple Linear Regression Models Using Scikit-Learn. - Assess the performance of regression models using various Key Performance Indicators (KPIs). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Лучшие рецензии

Фильтр по:

1–5 из 5 отзывов о курсе XG-Boost 101: Used Cars Price Prediction

автор: Md. M I C

18 мар. 2021 г.

Very engaging and clear explanation. One of the best guided projects.

автор: Satya N

22 февр. 2021 г.

Excellent Course

автор: Gregory G J

14 янв. 2021 г.

Thumbs Up!

автор: Paúl A A V

10 мар. 2021 г.

Nice

автор: Akash S C

29 мая 2021 г.

Not worth the money! Way short and simple introduction to XGBoost for the price of a full month course on Coursera.