Create a Superhero Name Generator with TensorFlow
Оценки: 20

Natural language generation with a deep learning model
Using tokenizer in TensorFlow
Продемонстрируйте этот практический опыт на собеседовании
Natural language generation with a deep learning model
Using tokenizer in TensorFlow
Продемонстрируйте этот практический опыт на собеседовании
In this guided project, we are going to create a neural network and train it on a small dataset of superhero names to learn to generate similar names. The dataset has over 9000 names of superheroes, supervillains and other fictional characters from a number of different comic books, TV shows and movies. Text generation is a common natural language processing task. We will create a character level language model that will predict the next character for a given input sequence. In order to get a new predicted superhero name, we will need to give our model a seed input - this can be a single character or a sequence of characters, and the model will then generate the next character that it predicts should after the input sequence. This character is then added to the seed input to create a new input, which is then used again to generate the next character, and so on. You will need prior programming experience in Python. Some experience with TensorFlow is recommended. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Recurrent Neural Networks, and optimization algorithms like gradient descent but want to understand how to use the TensorFlow to start performing natural language processing tasks like text classification or text generation. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Prior programming experience in Python. Conceptual understanding of Neural Networks. Prior experience with TensorFlow and Keras is recommended.
Natural Language Processing
Deep Learning
Machine Learning
Tensorflow
Natural Language Generation
На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:
Introduction
Data and Tokenizer
Names and Sequences
Creating Examples
Training and Validation Sets
Creating the Model
Training the Model
Generating Names
Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.
На разделенном экране видео преподаватель предоставляет пошаговые
от партнера RS
3 окт. 2021 г.I gained more knowledge about machine learning from this project.
от партнера AJ
2 янв. 2022 г.Instructor has a very clear and smooth flow of teaching. Every step of the project is properly explained. Prior Tensorflow knowledge can be helpful though not necessary.
от партнера MS
23 апр. 2021 г.Course doen't generate tangible outcome. It leaves you at a hangover. Otherwise this course is good.
Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.
Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.
Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.
В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.
Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.
Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.
Остались вопросы? Посетите Центр поддержки учащихся.