Scikit-Learn to Solve Regression Machine Learning Problems

от партнера
В этом Проект с консультациями вы:

Train machine learning regression models using Scikit-Learn library 

Understand the theory and intuition behind XG-Boost regression model

Evaluate several trained regression models performance using various Key Performance Indicators (KPIs)

2 hours
Начинающий
Загрузка не требуется
Видео на разделенном экране
Английский
Только для ПК

Hello everyone and welcome to this new hands-on project on Scikit-Learn for solving machine learning regression problems. In this project, we will learn how to build and train regression models using Scikit-Learn library. Scikit-learn is a free machine learning library developed for python. Scikit-learn offers several algorithms for classification, regression, and clustering. Several famous machine learning models are included such as support vector machines, random forests, gradient boosting, and k-means. This project is practical and directly applicable to many industries. You can add this project to your portfolio of projects which is essential for your next job interview.

Навыки, которые вы получите

  • Data Analysis

  • Machine Learning (ML) Algorithms

  • Machine Learning

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Understand the Problem Statement

  2. Import Key Libraries and Datasets

  3. Practice Opportunity #1 [Optional]

  4. Perform Data Visualization

  5. Perform Feature Engineering

  6. Understand XG-Boost Algorithm

  7. Train an XG-Boost Regression Model

  8. Evaluate Trained Model Performance

  9. Practice Opportunity #2 [Optional]

  10. Final Capstone Project

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.

Финансовая помощь недоступна для проектов с рекомендациями.

Прослушивание недоступно для проектов с консультациями.

В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.