Language Classification with Naive Bayes in Python

4.6
звезд
Оценки: 83
от партнера
Coursera Project Network
2,824 уже зарегистрированы
В этом Проект с консультациями вы:

H​ow to clean and preprocess data for language classification

H​ow to train and assess a Multinomial Naive Bayes Model

H​ow to use subword units to counteract the effects of class imbalance in language classification

Clock60-75 minutes
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 1-hour long project, you will learn how to clean and preprocess data for language classification. You will learn some theory behind Naive Bayes Modeling, and the impact that class imbalance of training data has on classification performance. You will learn how to use subword units to further mitigate the negative effects of class imbalance, and build an even better model.

Навыки, которые вы получите

StatisticsMachine LearningNatural Language Processing

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Exploratory data analysis of raw data, as well as some basic visualization

  2. Data cleaning and preprocessing relevant for task

  3. Theory behind and training of a Multinomial Naive Bayes Model

  4. M​aking adjustments to model to take into account class imbalance using theory behind Naive Bayes

  5. U​sing subword units to further counteract class imbalance and improve model performance

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Преподаватели

Рецензии

Лучшие отзывы о курсе LANGUAGE CLASSIFICATION WITH NAIVE BAYES IN PYTHON

Посмотреть все отзывы

Часто задаваемые вопросы

Часто задаваемые вопросы

  • Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

  • Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

  • Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

  • Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

  • Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.

  • Финансовая помощь недоступна для проектов с рекомендациями.

  • Прослушивание недоступно для проектов с консультациями.

  • В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

  • Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

  • Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.

Остались вопросы? Посетите Центр поддержки учащихся.