Hyperparameter Tuning with Keras Tuner

4.7
звезд
Оценки: 36
от партнера
Coursera Project Network
В этом Бесплатный проект с консультациями вы:

Create and run hyperparameter tuning experiments using Keras Tuner

Create and use Custom Keras Tuners

Продемонстрируйте этот практический опыт на собеседовании

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 2-hour long guided project, we will use Keras Tuner to find optimal hyperparamters for a Keras model. Keras Tuner is an open source package for Keras which can help machine learning practitioners automate Hyperparameter tuning tasks for their Keras models. The concepts learned in this project will apply across a variety of model architectures and problem scenarios. Please note that we are going to learn to use Keras Tuner for hyperparameter tuning, and are not going to implement the tuning algorithms ourselves. At the time of recording this project, Keras Tuner has a few tuning algorithms including Random Search, Bayesian Optimization and HyperBand. In order to complete this project successfully, you will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, and optimization algorithms like gradient descent but want to understand how to use Keras Tuner to start optimizing hyperparameters for training their Keras models. You should also be familiar with the Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Требования

Prior programming experience in Python. Conceptual understanding of Neural Networks. Prior experience with TensorFlow and Keras.

Навыки, которые вы получите

  • Deep Learning
  • Machine Learning
  • Hyperparameter Optimization
  • hyperparameter tuning
  • keras

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction

  2. Installing Keras Tuner and Downloading the Data

  3. Creating the Model

  4. Hyperparameters

  5. Keras Tuner

  6. Training Results

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.