Chevron Left
Вернуться к Interpretable machine learning applications: Part 5

Отзывы учащихся о курсе Interpretable machine learning applications: Part 5 от партнера Coursera Project Network

О курсе

You will be able to use the Aequitas Tool as a tool to measure and detect bias in the outcome of a machine learning prediction model. As a use case, we will be working with the dataset about recidivism, i.e., the likelihood for a former imprisoned person to commit another offence within the first two years, since release from prison. The guided project will be making use of the COMPAS dataset, which already includes predicted as well as actual outcomes. Given also that this technique is largely based on statistical descriptors for measuring bias and fairness, it is very independent from specific Machine Learning (ML) prediction models. In this sense, the project will boost your career not only as a Data Scientists or ML developer, but also as a policy and decision maker....
Фильтр по:

1–2 из 2 отзывов о курсе Interpretable machine learning applications: Part 5

автор: Mohamed K

20 июня 2021 г.

G​ood

автор: Pascal U E

3 июля 2021 г.

Good content, but hard to follow the instructor and do as he does