Image Segmentation with Python and Unsupervised Learning

от партнера
Coursera Project Network
В этом Бесплатный Проект с консультациями вы:

Display an image in a viewable frame, and in RGB space.

Use K-means to partition the pixels into relevant colour clusters and segment an image.

Find the best K value according to an objective criterion.

Продемонстрируйте этот практический опыт на собеседовании

Clock1 hour
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this one hour long project-based course, you will tackle a real-world problem in computer vision called segmentation. Segmentation means taking an image and partitioning it into different regions that capture the different elements of interest in the scene. We will tackle this problem using an unsupervised learning technique called K-means. By the end of this project, you will have segmented an image with unsupervised learning, using code you will write in Python.

Требования

I​ntermediate Python

Навыки, которые вы получите

Machine LearningUnsupervised LearningMatplotlibNumpyComputer Vision

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Load an image from file

  2. Display an image in frame and RGB space

  3. Find colour clusters using K-means

  4. Display colour clusters and segmented image

  5. Optimize K

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.