Deep-Dive into Tensorflow Activation Functions

от партнера
В этом Проект с консультациями вы:

Learn when, where, why and how to use different activation functions and for which situations

Code examples of each activation function from scratch in Python

2 hours
Учащийся среднего уровня
Загрузка не требуется
Видео на разделенном экране
Английский
Только для ПК

You've learned how to use Tensorflow. You've learned the important functions, how to design and implement sequential and functional models, and have completed several test projects. What's next? It's time to take a deep dive into activation functions, the essential function of every node and layer of a neural network, deciding whether to fire or not to fire, and adding an element of non-linearity (in most cases). In this 2 hour course-based project, you will join me in a deep-dive into an exhaustive list of activation functions usable in Tensorflow and other frameworks. I will explain the working details of each activation function, describe the differences between each and their pros and cons, and I will demonstrate each function being used, both from scratch and within Tensorflow. Join me and boost your AI & machine learning knowledge, while also receiving a certificate to boost your resume in the process! Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

  • Neural Network Activation Functions

  • Deep Learning

  • Artificial Neural Network

  • Python Programming

  • Tensorflow

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Review the Activation Functions, Their Properties & the Principle of Nonlinearity

  2. Implementing Linear and Binary Step Activations

  3. Implementing Ridge-based Activation Functions (ReLu family)

  4. Implementing Variations of Relu & the Swish Family of Non-Monotonic Activations

  5. Implementing Radial-based Activation Functions (RBF family)

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.

Финансовая помощь недоступна для проектов с рекомендациями.

Прослушивание недоступно для проектов с консультациями.

В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.