Project: Analyze Text Data with Yellowbrick

от партнера
Rhyme
В этом проект с консультациями вы:

Use visual diagnostic tools from Yellowbrick to steer your machine learning workflow

Vectorize text data using TF-IDF

Cluster documents using embedding techniques and appropriate metrics

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский + subtitles
LaptopНе для мобильных устройств

Welcome to this project-based course on Analyzing Text Data with Yellowbrick. Tasks such as assessing document similarity, topic modelling and other text mining endeavors are predicated on the notion of "closeness" or "similarity" between documents. In this course, we define various distance metrics (e.g. Euclidean, Hamming, Cosine, Manhattan, etc) and understand their merits and shortcomings as they relate to document similarity. We will apply these metrics on documents within a specific corpus and visualize our results. By the end of this course, you will be able to confidently use visual diagnostic tools from Yellowbrick to steer your machine learning workflow, vectorize text data using TF-IDF, and cluster documents using embedding techniques and appropriate metrics. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, Yellowbrick, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

Data ScienceNatural Language ProcessingMachine LearningPython ProgrammingData Visualization (DataViz)

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction and Loading the Corpus

  2. Vectorizing the Documents

  3. Clustering Similar Documents with Squared Euclidean Distance And Euclidean Distance

  4. Manhattan (aka “Taxicab” or “City Block”) Distance

  5. Bray Curtis Dissimilarity and Canberra Distance

  6. Cosine Distance

  7. What Metrics Not to Use

  8. Omitting Class Labels - Using KMeans Clustering

Как устроены проекты с консультациями

Ваше рабочее пространство — это виртуальный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

  • Приобретая проект, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

  • Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты недоступны на мобильном устройстве.

  • Ведущие проект преподаватели — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

  • Вы можете скачать и сохранить любой из созданных файлов своего проекта. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

  • Финансовая помощь недоступна для проектов.

  • Вам не нужны предварительные знания, чтобы начать работу с проектом. Преподаватель поможет вам на каждом этапе проекта.

  • Да, все необходимое для завершения проекта будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

  • Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.