Для кого этот курс: The course is aimed at people interested in researching social and economic networks, but should be accessible to advanced undergraduates and other people who have some prerequisites in mathematics and statistics. For example, it will be assumed that students are comfortable with basic concepts from linear algebra (e.g., matrix multiplication), probability theory (e.g., probability distributions, expected values, Bayes' rule), and statistics (e.g., hypothesis testing). Beyond those concepts, the course is self-contained.

Автор:   Stanford University

Как пройти курсЧтобы пройти курс, выполните все оцениваемые задания.
Оценки пользователей
Программа курса

Часто задаваемые вопросы
Как это работает
Задания курса
Задания курса

Каждый курс — это интерактивный учебник, который содержит видеоматериалы, тесты и проекты.

Помощь сокурсников
Помощь сокурсников

Общайтесь с тысячами других учащихся: обсуждайте идеи, материалы курса и помогайте друг другу осваивать новые понятия.


Получите документы о прохождении курсов и поделитесь своим успехом с друзьями, коллегами и работодателями.

Stanford University
The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States.
Рейтинги и отзывы
Оценка 4.8 из 5 по 143 отзывам

excelente curso!! muy practico y sumamente útil. gracias!

Lucidly taught by Prof. Jackson. I learned a whole deal of stuff that helps me make sense of some of the literature in economics that uses ideas from network analysis. My background is in economics (Master's degree).

Very comprehensive as an introductory course. The content is very actual and the lectures' flow is objective. Also, I liked the quiz inside the lectures as they helped in retain the subject. I have some hard difficulties with the mathematics as I'm very rusty with the mathematics (more than 30 years of rust). I'm from the compute science area so I would like to see more practice in algorithms. However, I would like to congratulate the Stanford University and Cousera teams for the course. Great job.

Thank you so so much for doing this. One step at a time towards universal education.