Chevron Left
Вернуться к Воспроизводимое исследование

Отзывы учащихся о курсе Воспроизводимое исследование от партнера Университет Джонса Хопкинса

4.6
звезд
Оценки: 4,045
Рецензии: 577

О курсе

This course focuses on the concepts and tools behind reporting modern data analyses in a reproducible manner. Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them. The need for reproducibility is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary. In addition, reproducibility makes an analysis more useful to others because the data and code that actually conducted the analysis are available. This course will focus on literate statistical analysis tools which allow one to publish data analyses in a single document that allows others to easily execute the same analysis to obtain the same results....

Лучшие рецензии

AA
12 февр. 2016 г.

My favorite course, at least it gives me an argument why scripted statistics is awesome and can be applied to a number of data related activities. Recycling chunks of code has proven useful to me.

RR
19 авг. 2020 г.

A very important course that greatly improved my ability to communicate the findings of any sort of data analysis that I perform. This is a critical skill to acquire to "deliver the means."

Фильтр по:

451–475 из 560 отзывов о курсе Воспроизводимое исследование

автор: Angel M

11 мар. 2021 г.

Nice course about how present data and make reports.

автор: Peter E

15 сент. 2018 г.

One of Peng's lectures was a little quick and loose

автор: xiang

31 июля 2016 г.

Good but not that deep. This should be in 2 weeks.

автор: Christopher G

31 авг. 2016 г.

Material was very interesting and I learned a lot

автор: Ray W

2 мар. 2016 г.

Good to know the principles here. Thanks.

автор: Ilia E

26 апр. 2016 г.

Week1 and Week2 should be swapped I guess.

автор: Fabien N

13 нояб. 2019 г.

I really liked the assignments projects !

автор: Shishir S P

23 нояб. 2020 г.

Enjoyed this course while studying it.

автор: Craig S

8 янв. 2018 г.

Some good insights into best practice!

автор: Alberto T

4 июня 2016 г.

Great course. Learn new amazing stuff.

автор: Shivang

29 сент. 2016 г.

Could have been covered in 1-2 weeks.

автор: Sabawoon S

4 июля 2017 г.

I can relate to this, very helpful.

автор: Anton

11 мая 2018 г.

Final project was very intersting.

автор: Mark S

20 янв. 2016 г.

Compact, informative and practical

автор: Mandar G

26 июня 2017 г.

A well structured course. Thanks.

автор: João R

3 июня 2017 г.

Too repetitive. Could be shorter.

автор: ric j n

7 апр. 2017 г.

The course is very informative.

автор: Iair M L S J

18 янв. 2017 г.

Could have more content in deep

автор: Naman D D

21 июня 2020 г.

It was an informative course.

автор: SAKINA Z

8 июля 2020 г.

great learning experience!!

автор: Sathiaseelan P

7 июня 2018 г.

This Course was really fun.

автор: Mark S

9 нояб. 2017 г.

Import information to know.

автор: Mohamad R B R

18 февр. 2016 г.

Still i​ can used easily.

автор: Timothy V B

19 мая 2017 г.

Good intro to concepts

автор: Vadim K

26 мая 2016 г.

Rather general topic