Chevron Left
Вернуться к Регрессионные модели

Отзывы учащихся о курсе Регрессионные модели от партнера Университет Джонса Хопкинса

Оценки: 3,316

О курсе

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing....

Лучшие рецензии


16 дек. 2017 г.

Excellent course that is jam-packed with useful material! It is quite challenging and gives a thorough grounding in how to approach the process of selecting a linear regression model for a data set.


10 мар. 2019 г.

This module was the maximum. I learned how powerful the use of Regression Models techniques in Data Science analysis is. I thank Professor Brian Caffo for sharing his knowledge with us. Thank you!

Фильтр по:

176–200 из 551 отзывов о курсе Регрессионные модели

автор: Illich M

15 июня 2017 г.

Tough course! I had to take it a couple of times to understand it.

автор: JI 吉 力

28 сент. 2016 г.

I really learned some useful knowledge and codes from this course!

автор: John C

11 дек. 2016 г.

Hard but rewarding work that I think is perfect for Data Science.

автор: Charbel L

20 авг. 2019 г.

Very comprehensive introduction to regression models. Well done!

автор: Laro N P

19 июня 2018 г.

More examples and exercises wil be better but is a great course.

автор: Shashikesh M

27 июля 2017 г.

One of the most required skill set in the field of data science.

автор: Nicholas T

29 июня 2020 г.

Great course!

Lot's of effort put in by the lecturers. Thank you

автор: Prakhar P

10 мая 2018 г.

The concepts are explained in a very concise and crisp manner.

автор: Jonathan S

4 авг. 2021 г.

Very good course. Covered all the basics of regresson models

автор: Light0617

28 дек. 2016 г.

great courses!!! very practical but no a lot of mathemetics

автор: Enrique A M

4 окт. 2020 г.

Mil Gracias maestros, Maestro Roger, Mil Gracias Coursera.

автор: Winston P

10 нояб. 2016 г.

Good course! Prof Caffo is very clear in his explanations!

автор: Mario P

22 окт. 2018 г.

I would like to thank all of you for this excellent work!

автор: Tine M

11 мая 2018 г.

Definitely a difficult course but a very interesting one.

автор: Wei L

12 окт. 2017 г.

A lot of good info. Some of them is a little hard to me

автор: Changkeun K

11 сент. 2017 г.

nice course. it requires knowledge of statistics a lot.

автор: Giovanni M C V

16 февр. 2016 г.

Excellent course with great didactic. Congratulations!

автор: 李俊宏

4 сент. 2017 г.

I like Brian Caffo's lectures. He is genius and calm

автор: Sidney d S P B

26 дек. 2020 г.

The professor Brian Caffo is excelent and the best!

автор: David R

5 дек. 2018 г.

Great course, well taught with very useful examples

автор: Javier E S

15 июля 2018 г.

Excellent course. Thank you Brian, Jeff and Roger.

автор: Jose F V

23 дек. 2018 г.

So far so good; key concepts explained in detail.

автор: Shivanand R K

21 июня 2016 г.

Great and Excellent thoughts and course material.

автор: Robert H

1 дек. 2015 г.

A few glitches, but excellent like all the other

автор: Henrique d S A

26 февр. 2018 г.

Nice course it will help me a lot ! Thank you!