Chevron Left
Вернуться к Applied Machine Learning in Python

Отзывы учащихся о курсе Applied Machine Learning in Python от партнера Мичиганский университет

4.6
звезд
Оценки: 6,766
Рецензии: 1,219

О курсе

This course will introduce the learner to applied machine learning, focusing more on the techniques and methods than on the statistics behind these methods. The course will start with a discussion of how machine learning is different than descriptive statistics, and introduce the scikit learn toolkit through a tutorial. The issue of dimensionality of data will be discussed, and the task of clustering data, as well as evaluating those clusters, will be tackled. Supervised approaches for creating predictive models will be described, and learners will be able to apply the scikit learn predictive modelling methods while understanding process issues related to data generalizability (e.g. cross validation, overfitting). The course will end with a look at more advanced techniques, such as building ensembles, and practical limitations of predictive models. By the end of this course, students will be able to identify the difference between a supervised (classification) and unsupervised (clustering) technique, identify which technique they need to apply for a particular dataset and need, engineer features to meet that need, and write python code to carry out an analysis. This course should be taken after Introduction to Data Science in Python and Applied Plotting, Charting & Data Representation in Python and before Applied Text Mining in Python and Applied Social Analysis in Python....

Лучшие рецензии

FL

Oct 14, 2017

Very well structured course, and very interesting too! Has made me want to pursue a career in machine learning. I originally just wanted to learn to program, without true goal, now I have one thanks!!

OA

Sep 09, 2017

This course is ideally designed for understanding, which tools you can use to do machine learning tasks in python. However, for deep understanding ML algorithms you should take more math based courses

Фильтр по:

926–950 из 1,199 отзывов о курсе Applied Machine Learning in Python

автор: Vidya M S

Sep 09, 2019

Good brief explainataion of supervised algorithm , its working and how its put to use with 'sklearn' . Jupyter notebooks on each module gives you a baseline of how machine learning is done with 'sklearn'. Quiz arent bad either . May be the last assignment on the final analysis of given data to provide a prediction could have been made more challenging by including grade on the EDA and explaination of model results.

автор: Renier B

Sep 19, 2017

I enjoyed this course. Many people comment on the lack of theory, but I think as important as theory is, it is even more important to be able to practically use ML algorithms.

This course will set you up to start doing Kaggle competitions quite adequately. In fact, the final assignment is very similar to a Kaggle competition and open-ended enough to make you really feel like you need to harness what you've learned.

автор: Vinayak N

Mar 02, 2019

Great course for beginners to start with Machine Learning in python. With sufficient paraphernalia about the concepts, the course dives straight into the guts of ML and helps a lot in applying ML concepts to datasets. The instructor is clear and concise and provides enough auxiliary reading for familiarizing ourself with previously-unknown ML concepts. Thanks to both U Mich and Coursera for organizing this course.

автор: Nicholas B

Feb 17, 2018

easily the most difficult course in the specialization (so far). learned a lot! Still, the course matter could've been made more clear in some areas of the assignments. Also, the time estimates are way low. Plan to spend 10 hours a week reviewing scikit learn documentation at a bare minimum. I spent over 12-15 hours a week on this course. I STRONGLY recommend if you're looking to get into machine learning.

автор: Dhanush b s

Aug 30, 2020

Many core concepts were not given much importance in the videos. The teacher talked in a very monotonous way and was literally reading from a script. Found myself going to several websites and the prescribed book most of the time.

But the final assignment really validated our work by giving us the opportunity to solve a problem all on our own without many hints.

Overall: Teacher- bad, course material-good

автор: Dawid M

Feb 24, 2020

There should be a note at the beginning of the assignment in Week 4, that we may run out of memory with the auto-grader and what to do in advance to avoid that. My biggest time in Week4 was spent looking for and upload umpteen times (trial and error) to find a memory problem instead of upload to learn to calibrate parameters. Received 0.81 (which is rather ok) in the end but the distaste remains.

автор: Vikram

Oct 17, 2017

Provide a quick and good overview of important, popular machine learning topics and their practical use with Python scikit-learn module. The material covers the important parameters to keep a watch on for performance and highlights the usual pitfalls and missteps. Very practical learning, makes one comfortable using ML tools and quickly apply for real problems like in the last assignment.

автор: Hritvik S

Jul 13, 2020

The course is designed perfectly and the pace is such that beginners in machine learning would enjoy. The course was well structured out and in a span of 4 weeks I think i learnt a lot. The only limitations i found were with the autograder not detecting files and other minor glitches like the videos not being marked completed even upon completion. But those can be fixed easily.

автор: jie

Apr 28, 2020

Just like other couses in this specialization, this course has great assignments which help alot.

As to instruction, totally different to previous courses, this instructor covered almost everything, probably too much for a four week course. I think I start to have some sense of machine learning however, I do need more study, probably Andrew Ng's course and refresh my maths.

автор: Maxwell's D

Jun 23, 2017

I really got a lot out of this course. I started with a solid background in traditional data analysis (PhD in experimental physics), but knew nothing about ML. This was a great overview, providing a just the right trade off between depth and breadth--plus it was short, which is good. I can now go and do deeper dives into the material. Thank you!

автор: Maurizio

Jun 06, 2019

I think it gives a great overview on Machine Learning and Sklearn. Nonetheless i noticed it is less curated compared to the prevoius courses in this specialization (wrong filenames, unfunctioning links, old version of pandas respect the one used till now). Anyway it worthed and I'll give a look also at the optional unsupervised learning part

автор: Çağdaş Y

Oct 22, 2017

The teacher's voice is not motivating, it made me fall asleep all the time. But content is surely good. It's a perfect checkpoint after Andrew Ng's machine learning courses, by making experimental practices over theoric practices. Seriously, speaker needs to speak more alive! I don't want to hear deep breathe noises when watching a course :)

автор: Mohit K

May 24, 2019

I Took this course blindly without knowing much about data visualization libraries. It took me a month or so to learn them first and then attempt this course further. The course study material is very decent but the assignments are pretty good and tricky. It is definitely a must-go-for course and I would surely recommend to my colleagues.

автор: Samchuk D

May 30, 2018

This one is very good and informative.

Although there is no explanations how to decide what type of preprocessing do on data set (to choose whether or not to do winsorization, convert categorical features to one-hot for linear models and to labeled for trees, etc) it still very helpful in understanding of PRACTICAL part of machine learning

автор: Sridhar V

Jun 12, 2020

This course was very interesting. Probably the longest course (duration wise) in this specialization. This course had to cover a lot of ground in 4 weeks time. Thoroughly enjoyed the assignments and it was challenging as well!. Gave 4 star because there are minor problems wrt. Autograder. But content wise there are no complains.

автор: Narendhiran

Feb 16, 2020

Lectures were a bit slow, I personally felt pace could be increased and more content could be covered in areas like boosting and all.The assignments gave me a hands-on approach in using sklearn library.I felt it was over-all a very good course and would definitely recommend it for others.

Thank You

Yours sincerely,

Narendhiran.R

автор: Chaitanya D

Jul 04, 2017

Interesting course, was curious about what all things will be covered in this course. It touches most of the topics that one should be aware of ML. Only thing that I felt bit overwhelming was the amount of material which was covered in 4 weeks. Could easily be stretched to 5/6 to make it less demanding for a novice person.

автор: Marcin B

May 26, 2020

Good stuff :) However approaching final assignments I was missing more info about preparation of an input data. As far as I know it is to some extent covered by first course of entire Specialization. So, I plan to take this one as well. But overall - very good intro to ML in my view. Thumbs up University of Michigan :)

автор: Alan E

Feb 05, 2018

Great course, with a very practical overview of the different options available for machine learning models using Python. The concepts are the same as in R-based machine learning, but this course was great for getting experience with which Python functions to use for various machine learning models.

автор: KUMAR M

Nov 26, 2019

Great course. It doesn't confuses you very deep mathematics involved in machine learning. Rather, with a touch of it, it focus more on how and when to apply the models in Machine learning. How to evaluate and optimize them. It's really Fantastic with it's hands on projects in assignments.

автор: Elizaveta P

May 15, 2018

This course is very cool and interesting. One thing, it would be more useful for me to have a little test/exercise after or in the middle of every video - to try, how I understood the material. Like in Andrew NG course or in Text Mining.

Anyway, thanks for a great course and your work!

автор: Amina B

Jun 12, 2020

Great course, somehow assignments are not always on the same level, the first was easy, the last seemed to be very complex, but was not, the assignment instructions were misleading. Anyway, I enjoyed this course too much and I want now to improve my abilities in underlying theories.

автор: Lalitha G

Nov 06, 2019

Not only in the last week, all the weeks can have assignments which are like projects. That may give more sense of analyzing and understanding the process of model selection, application of supervised learning techniques. But the course is good, and i have learnt it in faster pace.

автор: ENZHE L

Nov 07, 2017

kind of a good course. However, I think too much things have been put into this four-week class. All methods, for example, random forest method need a lot of practice. In the four week, I think I am not familiar with most of these method and I need to practice more in the future.

автор: Bret

Jun 16, 2017

This was a very practical course with a lot of useful stuff! My main frustration was that the final assignment could have used more starter code, as I spent way more time trying to get the data to load properly than I did on finding a model to score high enough for full marks