Для кого этот курс: This course is part of “Applied Data Science with Python“ and is intended for learners who have basic python or programming background, and want to apply statistics, machine learning, information visualization, social network analysis, and text analysis techniques to gain new insight into data. Only minimal statistics background is expected, and the first course contains a refresh of these basic concepts. There are no geographic restrictions. Learners with a formal training in Computer Science but without formal training in data science will still find the skills they acquire in these courses valuable in their studies and careers.

Автор:   University of Michigan

Как пройти курсЧтобы пройти курс, выполните все оцениваемые задания.
Оценки пользователей
Программа курса

Часто задаваемые вопросы
Как это работает
Задания курса
Задания курса

Каждый курс — это интерактивный учебник, который содержит видеоматериалы, тесты и проекты.

Помощь сокурсников
Помощь сокурсников

Общайтесь с тысячами других учащихся: обсуждайте идеи, материалы курса и помогайте друг другу осваивать новые понятия.


Получите документы о прохождении курсов и поделитесь своим успехом с друзьями, коллегами и работодателями.

University of Michigan
The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.
Рейтинги и отзывы
Оценка 4.5 из 5 по 1,654 отзывам

Very informative. Would be interested to see the correct way to complete many of the assignments, as I'm sure there are more elegant ways to complete them than I used

Nice course for beginners

excellent course

Much harder than I thought. Very in-depth introductory learning of python.

Preferably better if you allow scripting in .py because notebook is rather heavy and hard to

debug while assignments..

Hope you cover a bit more in detail with language structure, as well as give hints for solving assignments, since many parts were pretty above course level.

I would say the assignments were hard even for an R practitioner learning python like myself.