Chevron Left
Вернуться к Практическое компьютерное обучение

Отзывы учащихся о курсе Практическое компьютерное обучение от партнера Университет Джонса Хопкинса

Оценки: 3,161
Рецензии: 604

О курсе

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation....

Лучшие рецензии

13 авг. 2020 г.

recommended for all the 21st centuary students who might be intrested to play with data in future or some kind of work related to make predictions systemically must have good knowledge of this course

28 февр. 2017 г.

Issues of every stage of the construction of learning machine model, as well as issues with several different machine learning methods are well and in fine yet very understandable detail explained.

Фильтр по:

201–225 из 595 отзывов о курсе Практическое компьютерное обучение

автор: Aleksey K

9 февр. 2016 г.

Made many things clear. Perhaps, the best class in the series.

автор: Anna O

4 нояб. 2020 г.

a simple way of real practice of machine learning algorithms.

автор: Vitalii S

1 авг. 2017 г.

No swirl exercises, but last project totally worth my time.

автор: Rui R

5 февр. 2017 г.

One of the best courses in the Data Science Specialization,

автор: Jose R C

16 авг. 2016 г.

The machine learning course every Data Scientist should do.

автор: Harini A

8 июня 2020 г.

Good course material and very practical oriented training

автор: Erich F G

14 апр. 2018 г.

Great class. Easy to follow and I learned a great deal.

автор: Sebastian R

19 сент. 2017 г.

Great intro machine learning, you will know how to use it

автор: Carlos B

10 авг. 2017 г.

This was one of the better courses in the series, thanks.

автор: Anitha C

27 июля 2017 г.

I enjoyed working on this course. There is a lot good and

автор: ozan b

21 апр. 2017 г.

Best course of the programme. Simple and explained well.

автор: Harland H

30 сент. 2018 г.

Very informative and the project was fun to accomplish.

автор: Ilia S

26 апр. 2016 г.

One of the most valuable courses in the specialization!

автор: Klever M

29 июля 2019 г.

It was a great overview of the fascinating word of ML.

автор: Giovanni M C V

16 февр. 2016 г.

Excellent course with great didactic. Congratulations!

автор: Julien N

18 дек. 2018 г.

nice pace, good overview to start with modelling in R

автор: Sanjeev R

16 дек. 2018 г.

Introductory course but it explains the basics easily

автор: Hawk G

23 дек. 2017 г.

Good solid intro to the concepts of machine learning.

автор: Dimitrios G

7 июля 2017 г.

Amazing course. Short videos packed with information!

автор: antonio q

27 февр. 2018 г.

it was great, simply though exhaustive, thanks a lot

автор: Monnappa

12 нояб. 2016 г.

Good content as an introduction to Machine learning!

автор: Margaret O

17 сент. 2020 г.

It was challenging but awesome learning expereince

автор: Dewald O

24 февр. 2019 г.

great course in R, really covers the fundamentals.

автор: Yong-Meng G

19 июня 2017 г.

Insightful and practical ! One of the best so far.

автор: Shivanand R K

21 июня 2016 г.

Great and Excellent thoughts and course material.