Вернуться к Mathematics for Machine Learning: PCA

звезд

Оценки: 2,639

•

Рецензии: 660

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction.
At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge.
The lectures, examples and exercises require:
1. Some ability of abstract thinking
2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis)
3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization)
4. Basic knowledge in python programming and numpy
Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

WS

6 июля 2021 г.

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

JS

16 июля 2018 г.

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

Фильтр по:

автор: Jorge G

•15 сент. 2020 г.

its a good course, some exercices are not for beginner programers. I think on the PCA chapter the projection matrix is described wrong, I used the formula from previous weeks and it worked. I think the relation between kmeans and pca is not explained only on a programming task is breafly discussed but its described out of nowhere so you have to read the code to understand whats going on.

автор: Nelson F A

•25 апр. 2019 г.

This course brings together many of the concepts from the first two courses of the specialization. If you worked through them already, then this course is a must. There are some issues with the programming assignments and the lectures could do with some more practical examples. Be sure to check the discussions forums for help. For me they were essential to passing the course.

автор: Visveswara K M

•18 июня 2020 г.

This was a bit more challenging than the previous two courses. I didn't enjoy it as much as the previous courses, however, I learnt more than the previous two. The discussion forums were helpful and the instructors contributed regularly. The assignments were a bit frustrating at times but still manageable. However, the assignments could have had a bit more of explanations.

автор: greg m

•24 мая 2020 г.

Very good course, interesting material. However the amount of programming knowledge required is way beyond a beginner like myself and I struggled with that , consuming much time. Those with programming knowledge have a tremendous advantage on this course.

There should be a week or a separate brief course on python/numpy.

A follow up more advanced course would be good too.

автор: Evgeny ( C

•25 июля 2018 г.

It was a harder course where I spent double the time I have initially anticipated.

It is much harder than the two predecessor courses in specialization, and amount of direction when it comes to doing exercises is significantly smaller. More Python knowledge is required.

That said, I feel like I have finally understood the PCA and math behind it, which made it all worth it

автор: Mark S

•7 июля 2018 г.

Loved the course, although I wish there was more ramp up to some of the complex scenarios (or anything simple but new). Very helpful forums/community. Requires a fair amount of external reading/referencing for some of the concepts which seem to be covered only at a high level in the lectures.I would love to see more courses on applied mathematics for machine learning.

автор: Jérôme M

•26 июля 2018 г.

The best of the 3 courses. This is a refresh course of course. A solid background in linear algebra is required in order to fully understand everything. I personnaly recommen the MIT course from Gilbert Strang before you try this one. The python exercises are very well designed and I can only be thankful to having shared this knowledge. Thank you Imperial College.

автор: Timo K

•10 апр. 2018 г.

Not quite as good as the other two courses of the same specialization. Even though the instructor seems immensely knowledgeable he could work on delivering the material (which is more abstract than before to his credit) in a clearer manner.

The programming assignments are great albeit a bit hard to troubleshoot at times. All in all still a great course.

автор: Joshua B A

•11 мар. 2019 г.

Very good course. I liked every single video and exercise. I feel that the programming assignments were a bit more challenging and sometimes I was not too sure of what I was doing. I am not a professional in handling Python, so I had to surf online finding the commands to be able to build the simplest code possible. Other than that, it was enjoyable.

автор: Florian C

•20 июня 2021 г.

The course presents the basics for and concept of PCA in a quite approachable way and additionally provides some really interesting interpretations of projections and PCA. Unfortunately, the programming labs could use some additional hints for people unfamiliar with Python and Numpy without which some small errors can lead to great frustration.

автор: Cheng T Y

•8 июля 2018 г.

good thing is it's trying to give you a sense of practically how to do it.downside is it's not really bridging to from maths to that practical sense in python (and the online jupyter notebook is terrible).the teaching staff is actually more responsive than the other 2 in the specialization.a bit more sided on python than maths though.

автор: Phạm N M H

•12 июля 2019 г.

This maybe the most frustrating course and most advance compare to 2 other courses, you might confuse about the code in the assignment of this course. So, if you do have basic background about coding with numpy, matrices,etc..., I do recommend this course, if you qualify enough to fix the bugs of what the dev team left.

автор: Thorben S

•8 мар. 2019 г.

I would have liked to be introduced to the topic on a higher level first - and then, step by step, an introduction of the math to solve specific problems in the progress. That would be a perfect approach, especially for data scientists who just want to understand the underlying math for such a widely used technique.

автор: Jia J W

•2 дек. 2020 г.

The last lab session was a bit bizarre. Quality wise, it's not on par with the previous 2 courses, but it's still a good course. There was quite a huge jump from the previous courses. Be patient with yourself when learning. I think the learning outcomes would make your effort worthwhile.

автор: Andrés M

•4 июля 2020 г.

I believe the course is proper for people that have no prior knowledge in linear algebra whatsoever. I liked how clear it was to introduce concepts, yet I found that if you knew nothing the course is too hard but super easy for the ones that have some knowledge in algebra and calculus.

автор: Mike W

•22 мар. 2020 г.

The quality of this course is comparable to the previous courses in the specialization, but the math and derivations were harder to follow (even accounting for the increased difficulty of this course). The assignments also were very practical and help reinforce the course's content.

автор: Shariq A

•20 окт. 2019 г.

Thank you professor for providing such a valuable course.

Just I wanted to say one thing without hurting anyone, the week 4 on PCA is not very clear. The derivation are not very correlated .A humble request isthat to elaborate the derivation which would further enhance the learning

автор: Shuqin L

•4 авг. 2020 г.

The last course is especially challenging. The instructor could do a better job to explain the concept and calculation etc. The gap between lectures and assignments is way too big. If the course extends to 6 weeks, it may greatly help improve the quality of the course content.

автор: Aarón M C M

•10 мая 2020 г.

I think this is one of the bests courses that I have taken. I would just recommend to describe more accurately decimal precisions in tests because it has a little challenging to realize that the solutions proposed were not successful enough because of this issue.

автор: Jonathan F

•17 мар. 2019 г.

This course is way harder than the first two. The maths itself is more difficult. The Python parts are a lot more challenging because they require a good understanding of the way Numpy handles vectors and matrices. But the end result is good and it is worthwhile!

автор: JITHIN P J

•27 апр. 2020 г.

Course content is too hard to understand. You need to go through the content at-least 2 -3 times. But its good. Also assignments are bit tricky and you need to do alot of googling which will make you learn more. Thanks Coursera and ICL for this wonderful course

автор: Moreno C

•14 мар. 2020 г.

This was the most rigorous and demanding of the courses of this specialization.

The video lectures were well organized.

The interaction with the Jupyter Notebook was sometimes confusing but perhaps this was due to my limited knowledge of Python.

Thank you.

автор: Stephan S

•6 мар. 2020 г.

Hi, at first thanks for everyone to make this course possible. In contrast of teh first two parts of the specialization, this course is quite challanging. Some real example would make live a lot easier. Nevertheless in my opinion it is worth the effort.

автор: Shri H

•22 авг. 2020 г.

The programming assignments are very poorly designed (along with bugs ) which makes it really frustrating at times. The Course is overall insightful but requires lots of background study and practice. Basics of Python (using numpy module)is essential.

автор: Gaetano F

•10 окт. 2019 г.

I found the course excellent but in the programming assignments is not always clear what should one exactly do. They are also quite confusing, especially the last one on PCA implementation. One wastes so much time trying to figure out the solution.

- Google Data Analyst
- Управление проектами от Google
- UX-дизайн от Google
- ИТ-поддержка Google
- Наука о данных IBM
- Аналитик данных от IBM
- Анализ данных с помощью Excel и R от IBM
- Аналитик по кибербезопасности от IBM
- Маркетинг в социальных сетях от Facebook
- Разработчик комплексных облачных приложений IBM
- Представитель по развитию продаж от Salesforce
- Сбытовые операции Salesforce
- Soporte de Tecnologías de la Información de Google
- Certificado profesional de Suporte em TI do Google
- ИТ-автоматизация с помощью Python от Google
- DeepLearning.AI Tensorflow
- Popular Cybersecurity Certifications
- Popular SQL Certifications
- Popular IT Certifications
- See all certificates

- бесплатные курсы
- Изучите иностранный язык
- Python
- Java
- веб-дизайн
- SQL
- Cursos Gratis
- Microsoft Excel
- Управление проектами
- Безопасность в киберпространстве
- Людские ресурсы
- Data Science Free Courses
- говорить на английском
- Content Writing
- Веб-разработка: полный спектр технологий
- Искусственный интеллект
- Программирование на языке C
- Навыки общения
- Блокчейн
- Просмотреть все курсы

- Навыки для команд по науке о данных
- Принятие решений на основе данных
- Навыки в области программной инженерии
- Навыки межличностного общения для проектных групп
- Управленческие навыки
- Навыки в области маркетинга
- Навыки для отделов продаж
- Навыки менеджера по продукту
- Навыки в области финансов
- Android Development Projects
- TensorFlow and Keras Projects
- Python для всех
- Глубокое обучение
- Навыки Excel для бизнеса
- Основы бизнеса
- Машинное обучение
- AWS Fundamentals
- Data Engineering Foundations
- Data Analyst Skills
- Skills for UX Designers

- MasterTrack® Certificates
- Профессиональные сертификаты
- University Certificates
- MBA & Business Degrees
- Степени в области науки о данных
- Степени в области компьютерных наук
- Дипломные программы по анализу данных
- Степени в области общественного здравоохранения
- Social Sciences Degrees
- Дипломные программы в области управления
- Degrees from Top European Universities
- Дипломы магистра
- Степени бакалавра
- Degrees with a Performance Pathway
- Бакалаврские курсы
- What is a Bachelor's Degree?
- How Long Does a Master's Degree Take?
- Is an Online MBA Worth It?
- 7 Ways to Pay for Graduate School
- Просмотреть все степени