Chevron Left
Вернуться к Structuring Machine Learning Projects

Отзывы учащихся о курсе Structuring Machine Learning Projects от партнера deeplearning.ai

4.8
звезд
Оценки: 48,880

О курсе

In the third course of the Deep Learning Specialization, you will learn how to build a successful machine learning project and get to practice decision-making as a machine learning project leader. By the end, you will be able to diagnose errors in a machine learning system; prioritize strategies for reducing errors; understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance; and apply end-to-end learning, transfer learning, and multi-task learning. This is also a standalone course for learners who have basic machine learning knowledge. This course draws on Andrew Ng’s experience building and shipping many deep learning products. If you aspire to become a technical leader who can set the direction for an AI team, this course provides the "industry experience" that you might otherwise get only after years of ML work experience. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Лучшие рецензии

JB

1 июля 2020 г.

While the information from this course was awesome I would've liked some hand on projects to get the information running. Nonetheless, the two simulation task were the best (more would've been neat!).

MG

30 мар. 2020 г.

It is very nice to have a very experienced deep learning practitioner showing you the "magic" of making DNN works. That is usually passed from Professor to graduate student, but is available here now.

Фильтр по:

5251–5275 из 5,575 отзывов о курсе Structuring Machine Learning Projects

автор: Justin M

2 дек. 2018 г.

As always Dr. Andrew Ng offers great insights into specifics of hot topics (Multi-Task & Transfer Learning) as well as providing unique "studies" as quizzes to complete each week. These quizzes are the primary take-away from the 2 weeks that offer a lot of redundant lecture material. Save some time... just make the 'simulations' the focus of the class then... perhaps use some transfer learning toward a different application in the quiz.

автор: Alan S

1 окт. 2017 г.

This is a decent course, but I found it less useful than other courses so far. There seemed like a lot of redundancy and repetitiveness in the descriptions, and I think all of the information could easily be fit into a single week that more concisely captures the exact same information. The quizzes in this course were interesting because it had a very applied nature (trying to capture real world scenarios you may encounter)

автор: Shahin A

19 мар. 2020 г.

This is a valuable but misplaced course. After the first two courses, I expected to get hands-on experience with TF+Keras, and after that, or beside it, learn about strategies of tackling ML projects. However, by first talking about the strategies, one could miss many valuable points because one is not deeply aware of the necessity of these points. Hence, the course was boring comparing the last two.

автор: Aaron L

30 нояб. 2017 г.

Good class, but I think as part of the Deep Learning specialization that it'd be more useful if there were some programming exercises to reinforce what is taught in the videos.

Week 1 seems to reference a "flight simulation" programming assignment, but then it just has a description and a "mark as completed" button. Maybe this programming assignment is still being worked on or the content is wrong.

автор: Matthieu D

13 мая 2018 г.

I'm grading this course lower than I graded the two previous ones for two reasons: 1) while there are many examples given in the course, it is actually hard to take a step back and see how to concretely achieve some goals in a more generic manner, and 2) in the assignments (which are made of quizzes), many "wrong" answers would actually be appropriate if more context was given.

автор: Nathan W

19 февр. 2021 г.

This course really felt a lot more thrown together than the other ones, with a less cohesive lesson and quizzes that had more subjective material in them than usual. And perhaps it is a bit nitpicky, but I found the swipe Ng took at computational linguists to be kinda distasteful. I know there is a lot of bad blood between ML and AI people, but it has no place in coursework.

автор: Reza S

15 февр. 2020 г.

Thanks Andrew for this course! However, it is obvious that less care was taken for the preparation of this course compared to previous courses (more typos, etc). Some of the sentences in the quiz were not clear at all and made it very confusing to choose from the options. A little programming assignment at least would be nice to reinforce our learning of the materials.

автор: Gustaf B

10 мая 2021 г.

The course goes through valuable practices when it comes to analyzing errors, and Andrew does a great job at explaining. Though, I felt that there should have been programming assignments to accompany the theory. I strongly prefer the layout of previous courses, "quiz -> programming" as that feels more interactive than just doing a quiz in the end.

автор: Jason C

26 дек. 2017 г.

nice lectures and very useful knowledge learned by Andrew, but it is really short and no working assignment through real code.... and quite a lot more mistake than course1 and 2. Really love the two previous courses, don't work why the quality of the course drop off so sharply.

Somewhat disappointed, but still really great lectures.

автор: mythorganizer

28 авг. 2020 г.

It gave much more industry driven approaches to improving the model. I as a student don't have that much experience with deeplearning and that' why I couldn't relate with most of the topics that were going on here. Of course, the teaching quality was supreme. But the course's contents itself felt a little bit dry to me.

автор: Myrthe S

7 окт. 2022 г.

this was probably my least favourite course in the specialiation since it didn´t really included coding, yet I think it is usefull to take a look at even though you might not be able to put these ideas in practice immidiatily, it does give you an idea on how to solve various problems you might encounter in the future.

автор: Fabio R

6 сент. 2022 г.

The course provides good guidelines and practices to keep in mind. The case studies are a great tool to think about real-life applications. However, they have several questions where the answers are not clear-cut and often the expected response contradicts some of the statements made by the instructor in the videos.

автор: Sagar B

29 окт. 2017 г.

The course work is really good. It has a practical emphasis. However, I did not like the quizzes (especially week 2 quiz) in the sense that the options are not very clear to understand and you end up being more confused. I hope the team works on the clarity of options for people who take it in future.

автор: Fabian A R G

28 окт. 2017 г.

Even though the materials in the course are very interesting, I would expect that in the third course we would have more tools in order to work by ourselves in a project... It would have been amazing a final project where you can put together this tools. Nevertheless it is still an interesting course.

автор: David B

6 окт. 2017 г.

This course was less satisfying then the 2 previous in the specialization. A lot of repetitions, no programming exercices. Interesting test cases but feels a little out of scope because we have not done image and speech reccon yet. Consider putting the course at the end of the specialization maybe?

автор: Kritika A

26 мар. 2019 г.

I think the week 1 was overstreched. There was not much content to deliver and for the first time Andrew's classes made me sleep. It was like the boring lectures we get at school. I think we can easily shorten the length of this course or just scrape it and add it to course 2.

автор: Andrej P

26 янв. 2018 г.

I found this course to be a bit confusing with regards to what data set (training/dev/test) to fix under what conditions and so on. I've also missed having a practical home work, the case studies were fine, but I find that practical applications help me remember things better.

автор: Filip R

18 мар. 2020 г.

Some of the quiz questions (especially in the first week) were quite ambiguous. If I did not take the quiz directly after the videos, I don't believe I would be able to pass, Also some written summaries as in the 1st Ng's Machine Learning course would be helpful.

автор: Joshua O

19 окт. 2018 г.

Some helpful advice here and there, but a lot of it seemed like common sense. It was not that difficult and a tad boring. Would maybe benefit from having us do actually data collection and cleaning tasks, or implement a ML pipeline and monitoring for the pipeline

автор: Kj C

13 дек. 2017 г.

Generally provides very good advice. Perhaps this course better placed at the end of the course as there isn't much hands-on experience involved and students would benefit form having experience with CNN's and RNN's prior to thinking on project-level scales.

автор: Jacob T

29 нояб. 2017 г.

Too many broad statements of "yeah, we generally do this thing for best results" with very little explanation of the background theory. I don't expect advanced math and derivations, but better intuition into why certain best practices exist would be nice.

автор: Vijay A

23 дек. 2019 г.

This course was good, but it was pretty light on content to be considered a separate course by itself. Though the content is valuable, it could've been included as additional/bonus content on either of the first two courses in the DeepLearnign.ai series.

автор: Tom B

13 апр. 2018 г.

I didn't find this course as engaging as Course 1 -- there weren't any coding exercises and it felt like a bit of a let-down after the excitement of coding in Course 1. But it may turn out to have value when trying to start a new AI project from scratch.

автор: Francesco B

6 окт. 2017 г.

This course felt a bit "padded" compared to the previous ones. Also the lack of programming exercises made it seem more theoretical. Finally, the material seems rushed, e.g. there are mistakes in the video editing, strangely long pauses by the teacher.

автор: Peter G

5 дек. 2017 г.

Many helpful insights and advice from an experienced person is always great, but I don't thing this can be qualified as a complete 'course'. As I now see it - Course 2 and 3 of this specialization could easily be merged into one without loosing much.