Chevron Left
Вернуться к Image Compression and Generation using Variational Autoencoders in Python

Отзывы учащихся о курсе Image Compression and Generation using Variational Autoencoders in Python от партнера Coursera Project Network

4.9
звезд
Оценки: 9
Рецензии: 2

О курсе

In this 1-hour long project, you will be introduced to the Variational Autoencoder. We will discuss some basic theory behind this model, and move on to creating a machine learning project based on this architecture. Our data comprises 60.000 characters from a dataset of fonts. We will train a variational autoencoder that will be capable of compressing this character font data from 2500 dimensions down to 32 dimensions. This same model will be able to then reconstruct its original input with high fidelity. The true advantage of the variational autoencoder is its ability to create new outputs that come from distributions that closely follow its training data: we can output characters in brand new fonts. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Лучшие рецензии

Фильтр по:

1–2 из 2 отзывов о курсе Image Compression and Generation using Variational Autoencoders in Python

автор: Debadri B

May 29, 2020

Good project. Add some more clarity to it , especially to the mathematical background.

автор: JONNALA S R

May 07, 2020

Good Initiation..