Chevron Left
Вернуться к Project: Classification with Transfer Learning in Keras

Отзывы учащихся о курсе Project: Classification with Transfer Learning in Keras от партнера Rhyme

О курсе

In this 1.5 hour long project-based course, you will learn to create and train a Convolutional Neural Network (CNN) with an existing CNN model architecture, and its pre-trained weights. We will use the MobileNet model architecture along with its weights trained on the popular ImageNet dataset. By using a model with pre-trained weights, and then training just the last layers on a new dataset, we can drastically reduce the training time required to fit the model to the new data . The pre-trained model has already learned to recognize thousands on simple and complex image features, and we are using its output as the input to the last layers that we are training. In order to be successful in this project, you should be familiar with Python, Neural Networks, and CNNs. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....
Фильтр по:

1–2 из 2 отзывов о курсе Project: Classification with Transfer Learning in Keras

автор: Ali E

Mar 22, 2020

Good course, but still misses a key step: how to save and reuse the modified model without having to rebuild it from scratch? Literature about this topic is at best ambiguous if not flat out lacking. You should include the method for saving and reloading customized models with custom layers and/or standard layers that have been added to the pre-trained models.

автор: Utkarsh R

Mar 24, 2020

Learning a topic using Hands on project is way better than passive learning in my opinion. Explanation could've been much better. They can use slides and animation to explain the core functioning of objects.