Chevron Left
Вернуться к Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

Отзывы учащихся о курсе Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization от партнера deeplearning.ai

4.9
звезд
Оценки: 56,827
Рецензии: 6,521

О курсе

This course will teach you the "magic" of getting deep learning to work well. Rather than the deep learning process being a black box, you will understand what drives performance, and be able to more systematically get good results. You will also learn TensorFlow. After 3 weeks, you will: - Understand industry best-practices for building deep learning applications. - Be able to effectively use the common neural network "tricks", including initialization, L2 and dropout regularization, Batch normalization, gradient checking, - Be able to implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence. - Understand new best-practices for the deep learning era of how to set up train/dev/test sets and analyze bias/variance - Be able to implement a neural network in TensorFlow. This is the second course of the Deep Learning Specialization....

Лучшие рецензии

AM
8 окт. 2019 г.

I really enjoyed this course. Many details are given here that are crucial to gain experience and tips on things that looks easy at first sight but are important for a faster ML project implementation

NA
13 янв. 2020 г.

After completion of this course I know which values to look at if my ML model is not performing up to the task. It is a detailed but not too complicated course to understand the parameters used by ML.

Фильтр по:

4276–4300 из 6,443 отзывов о курсе Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

автор: null

11 окт. 2019 г.

非常好,提供了很多超参调节实践经验

автор: Raunak S

23 авг. 2019 г.

as always as best

автор: Abhinand

13 июня 2019 г.

Brilliant course.

автор: Ashish J

11 июня 2019 г.

Great Assignments

автор: supertian

3 июня 2019 г.

It's very useful.

автор: Yongjian F

25 мая 2019 г.

Very interesting.

автор: Manish K

25 мая 2019 г.

very good content

автор: zhou

31 мар. 2019 г.

非常详细,讲的特别好,还有实验课程

автор: James C

22 февр. 2019 г.

Very good course.

автор: JINWOO S

19 февр. 2019 г.

best course ever!

автор: AASHISH B

14 февр. 2019 г.

Awesome course :)

автор: HARENDRA S

3 янв. 2019 г.

Very good course.

автор: Eoghan T

1 янв. 2019 г.

Thanks, Prof. Ng!

автор: 朱荣鑫

22 дек. 2018 г.

As good as before

автор: Mohammed A B

15 дек. 2018 г.

awesome content !

автор: Motilal R S

3 дек. 2018 г.

Excellent Course!

автор: Stefan K

23 нояб. 2018 г.

Very good course!

автор: 苏庆祝

22 нояб. 2018 г.

very nice course.

автор: Bhaskar D

20 нояб. 2018 г.

Excellent course!

автор: Jabberwoo

14 нояб. 2018 г.

Love this course!

автор: Bogdan S

4 нояб. 2018 г.

Excellent course!

автор: Zhidan W

17 окт. 2018 г.

Extremely helpful

автор: Jakub V

9 сент. 2018 г.

Depth and clarity

автор: Timur B

1 сент. 2018 г.

Excellent course!

автор: Vinay A

27 авг. 2018 г.

Fantastic Course.