Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

4.6
звезд
Оценки: 32,498
Рецензии: 6,934

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools
(рецензий: 243)
Introductory course
(рецензий: 1056)

Лучшие рецензии

LR
7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

SF
14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

Фильтр по:

6401–6425 из 6,822 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Aditya C

4 янв. 2019 г.

Very basic...One must do the entire specialization to make any sense.

автор: Rupert

31 авг. 2017 г.

Very basic. Probably unnecessary for anyone with some experience in R

автор: isha v

12 авг. 2017 г.

Please include some optional Quizzes/Assignments also for practising.

автор: Prasen M

17 апр. 2017 г.

Very basic introductory course. Looking forward to the other modules.

автор: Juliana N

12 мая 2016 г.

The instructions for using git and git hub left a lot to be desired.

автор: Revanth T

15 февр. 2016 г.

Very Basic Course. Doesn't require the time that was allotted to it.

автор: Matthew K

10 мар. 2016 г.

Probably more useful for someone with no background in programming.

автор: Arslan R

8 февр. 2019 г.

good for introduction. The sound quality is low. Can be shortened.

автор: Rustick T

22 нояб. 2017 г.

Ne présente qu'un ensemble restreint des outils du data scientist.

автор: rotem n

13 сент. 2016 г.

too easy,

i wish we had more things do submit so we will learn more

автор: Haojun S

12 сент. 2016 г.

The introduction of how to use github is undetailed in my opinion.

автор: Rakesh

10 апр. 2016 г.

Too simple. Personally feel this can be clubbed with R Programming

автор: Kalle H

11 окт. 2017 г.

OK introduction to specialisation but now very useful on its own.

автор: Luca C

14 нояб. 2016 г.

Not really specific, just a broad indtroduction to data analysis.

автор: Chris B

25 авг. 2017 г.

I was a fan but I loathe the fact you cannot review the quizzes.

автор: Christian C

1 мар. 2017 г.

Good for a beginners course, could be a little more challenging.

автор: Mikołaj

2 июля 2019 г.

Good course, but in 4 weeks you will get only basics of basics.

автор: Akash G

8 мая 2018 г.

Course is good but I personally feel that course lacks content.

автор: Aldy S D R

18 февр. 2018 г.

I have a problem with the sound. That quality is so bad I think

автор: ANURAG D

26 сент. 2017 г.

The course is way too basic and can be completed within 2 hours

автор: Marcio H M

31 авг. 2016 г.

This one is just a warm up for the Data Science Specialization.

автор: Amar H

19 апр. 2020 г.

please improve the whole layout. introductions and so forth.

:D

автор: Douglas P

27 июня 2016 г.

It's a good preview, but very little is actually learned here.

автор: 30_Pirthvi H G

2 авг. 2020 г.

Not informative as expected. Please include more information.

автор: Ja-Eun L

6 июня 2018 г.

Not sure it can constitute as one course - was helpful though