Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

4.6
звезд
Оценки: 30,005
Рецензии: 6,396

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools
(рецензий: 243)
Introductory course
(рецензий: 1056)

Лучшие рецензии

LR
7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

SF
14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

Фильтр по:

4876–4900 из 6,253 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Yolene D

6 апр. 2017 г.

Great way to get started on the Data Science course with the right tools.

автор: Irakli N

11 июля 2016 г.

It was good, well-executed course, but it was too basic. I expected more.

автор: Abeduddin B

22 сент. 2020 г.

if live instructor leads the class would be much helpful than auto video

автор: Elizabeth K

10 июля 2020 г.

Some quiz questions are a little out of data but overall a great course!

автор: KESHAV P

18 апр. 2020 г.

SOMETIMES THE COURSE BECOMES VERY BORING .BUT OVERALL A VERY GOOD COURSE

автор: Deena S

9 дек. 2018 г.

more hands on exercises (not just in the quiz) for Git would be helpful.

автор: Guillaume M

2 мая 2018 г.

very comprehensive and simple introduction to the basics of data science

автор: Chengde W

13 июня 2017 г.

Good start for the specialization. Did not like the peer review section.

автор: Felix H

17 окт. 2020 г.

I liked the emphasis on setting up for collaborative work using GitHub.

автор: Ingrid I S L

22 июля 2020 г.

Buen curso, ayuda a conocer diferentes herramientas para manejar datos.

автор: KANHU C P

9 мая 2020 г.

Best suited to beginners. U will get to know many informative concepts.

автор: Shubham R

16 янв. 2020 г.

More tools should be included in introduction such as python, hive etc.

автор: Alexandre S

28 апр. 2018 г.

Algumas informações estão desatualizadas o que dificulta o aprendizado.

автор: Mohammad A R B

26 мар. 2018 г.

This course is an excellent introduction for a Data Science enthusiast.

автор: Daniel J F

10 мар. 2018 г.

Pretty useful, wish there was more practice build in on using terminal!

автор: Seth L

21 сент. 2017 г.

A decent overview for anyone interested in what the topic is and isn't.

автор: Karen H A

18 авг. 2017 г.

Good introduction into the tools needed for understanding Data Science.

автор: Yi-Yang L

14 февр. 2017 г.

A little bit simple, but maybe it is enough for an introduction course.

автор: SFA P

8 нояб. 2020 г.

For beginners, the github version control materials are hard to grasp.

автор: Carlos V

6 сент. 2020 г.

Buen curso, aunque incomoda que todo sea realizado por una voz digital

автор: Alberto H P

21 мая 2020 г.

Claro, fácil de seguir y bien secuenciado. Una buena introducción a R.

автор: Md A H

7 мая 2020 г.

this course is very helpful.i gather many new things from this course.

автор: gabriel h

24 авг. 2019 г.

Very good course, need a little update but has very easy do understand

автор: Jukka H

5 февр. 2019 г.

It covered the basics of concepts and tools that Data Scientist needs!

автор: Dolphin L

13 сент. 2018 г.

A good course. Step by step to create concept for git, github, R tool.