Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

4.6
звезд
Оценки: 32,996
Рецензии: 7,048

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools

(рецензий: 243)

Introductory course

(рецензий: 1056)

Лучшие рецензии

LR

7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

SF

14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

Фильтр по:

5201–5225 из 6,945 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Jesus V M

5 нояб. 2020 г.

Although it does not affect the learning experience, the robot voice in the videos is a bit annoying, to be honest.

автор: Mike W

12 апр. 2020 г.

Easy introductory course. Good foundational knowledge. First time using R Studio, Rmarkdown, Github. Quite helpful.

автор: Ian R

31 окт. 2019 г.

While the material is fairly basic, it is still very useful to future courses in the series. A good place to start.

автор: Elijah L

24 окт. 2018 г.

Fine for what it was but really did not need to be its own course. Could have just been tacked on to R Programming.

автор: Roma R

2 сент. 2018 г.

Great course to launch yourself into the data science world. Content is brief and nicely designed to get you ready.

автор: Balamurugan

2 мая 2018 г.

Good Introductory course to dive into tools and materials for starting our journey on data analytics specialization

автор: Victoria P

19 окт. 2020 г.

Me pareció un curso bastante completo. Tuve algunas dificultades con el uso de Github pero aún así pude progresar.

автор: KAVIARASAN R

28 июня 2020 г.

I expected more but this is really just basics and this is little bit bored because of the AI was the instructor..

автор: Sushmit R

24 июля 2017 г.

Well structured and easy to follow. Most importantly, the onus is placed on the student to explore and self-learn.

автор: Cristian B G

16 февр. 2016 г.

Buen curso sobre la iniciación a la ciencia de datos, las bases y las herramientas que se emplean para este mundo.

автор: Hannah G

16 янв. 2016 г.

A simple introduction. Easy to cover very quickly, however important to understand the basics before progressing.

автор: jihane h

24 февр. 2022 г.

it is a good overview but I found myself needing to go outside the source provided to learn about git for example

автор: Ming T

5 янв. 2021 г.

it introduces some very useful tools- such as version control with github, and the explanations are fairly clear.

автор: Dhiraj S

2 сент. 2020 г.

You'll install 'R', 'R Studio'.

Will link R Studio with GitHUB

Will learn certain steps as introduction.

[That's it]

автор: Daniel G

12 дек. 2019 г.

O curso é bom, mas achei a fala robotizada estranha e acho que a linguagem R está perdendo terreno para o Python.

автор: NWONGBOUWOH M C

4 апр. 2019 г.

As a beginner, it was very instructive. New concepts introduced built-up on previous ones as the course unfolded.

автор: Chandra S K

7 дек. 2018 г.

I think more info about git and other toolboxes would be interesting. It took 1 day to complete the whole course.

автор: Steven C

21 дек. 2016 г.

I wouldn't really call this a course, rather it's more like an introduction to the very basic tools of the trade.

автор: Iseult A C

22 сент. 2016 г.

Very clear introduction for those unfamiliar with R, RStudio, Git, GitHub and the basics of statistical analysis.

автор: Miguel I E

17 июня 2020 г.

Mucho contenido pero las explicaciones son difíciles de seguir en cuanto a instalación y manejo de los programas

автор: Joan M

22 дек. 2019 г.

Some of the dictation should be changed so that the computer says "for example" instead of "e.g."

(For example.)

автор: Carol P

3 дек. 2017 г.

The course was great. Wish there was more walk through general assignments to help you hands on with the tools.

автор: Raymond K

6 июля 2017 г.

Good Intro level course to data science and provides a quick glimpse of the necessary tools used in the industry

автор: Caleb T

3 июля 2017 г.

Good starter, but could have been Week 1 of a separate class. The entire course took all of 2 hours to complete.

автор: Aluash S

2 февр. 2021 г.

I thought that the course was too simple and basic. I think that it all could have been condensed into 2 weeks.