Об этом курсе
Недавно просмотрено: 121,795

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Прибл. 29 часа на выполнение

Предполагаемая нагрузка: 6 weeks, 8-10 hours per week...


Субтитры: Английский

Приобретаемые навыки

Binary ClassificationData AnalysisMicrosoft ExcelLinear Regression

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Прибл. 29 часа на выполнение

Предполагаемая нагрузка: 6 weeks, 8-10 hours per week...


Субтитры: Английский

Программа курса: что вы изучите

1 ч. на завершение

About This Course

This course will prepare you to design and implement realistic predictive models based on data. In the Final Project (module 6) you will assume the role of a business data analyst for a bank, and develop two different predictive models to determine which applicants for credit cards should be accepted and which rejected. Your first model will focus on minimizing default risk, and your second on maximizing bank profits. The two models should demonstrate to you in a practical, hands-on way the idea that your choice of business metric drives your choice of an optimal model.The second big idea this course seeks to demonstrate is that your data-analysis results cannot and should not aim to eliminate all uncertainty. Your role as a data-analyst is to reduce uncertainty for decision-makers by a financially valuable increment, while quantifying how much uncertainty remains. You will learn to calculate and apply to real-world examples the most important uncertainty measures used in business, including classification error rates, entropy of information, and confidence intervals for linear regression. All the data you need is provided within the course, and all assignments are designed to be done in MS Excel. The course will give you enough practice with Excel to become fluent in its most commonly used business functions, and you’ll be ready to learn any other Excel functionality you might need in future (module 1). The course does not cover Visual Basic or Pivot Tables and you will not need them to complete the assignments. All advanced concepts are demonstrated in individual Excel spreadsheet templates that you can use to answer relevant questions. You will emerge with substantial vocabulary and practical knowledge of how to apply business data analysis methods based on binary classification (module 2), information theory and entropy measures (module 3), and linear regression (module 4 and 5), all using no software tools more complex than Excel.

2 видео ((всего 11 мин.)), 2 материалов для самостоятельного изучения
2 видео
Introduction to Mastering Data Analysis in Excel6мин
2 материала для самостоятельного изучения
Specialization Overview10мин
Course Overview10мин
2 ч. на завершение

Excel Essentials for Beginners

In this module, will explore the essential Excel skills to address typical business situations you may encounter in the future. The Excel vocabulary and functions taught throughout this module make it possible for you to understand the additional explanatory Excel spreadsheets that accompany later videos in this course.

8 видео ((всего 52 мин.)), 1 материал для самостоятельного изучения, 2 тестов
8 видео
Basic Excel Vocabulary; Intro to Charting7мин
Arithmetic in Excel2мин
Functions on Individual Cells3мин
Functions on a Set of Numbers10мин
Functions on Ordered Pairs of Data8мин
Sorting Data in Excel5мин
Introduction to the Solver Plug-in8мин
1 материал для самостоятельного изучения
Tips for Success10мин
2 практического упражнения
Excel Essentials Practice30мин
Excel Essentials30мин
2 ч. на завершение

Binary Classification

Separating collections into two categories, such as “buy this stock, don’t but that stock” or “target this customer with a special offer, but not that one” is the ultimate goal of most business data-analysis projects. There is a specialized vocabulary of measures for comparing and optimizing the performance of the algorithms used to classify collections into two groups. You will learn how and why to apply these different metrics, including how to calculate the all-important AUC: the area under the Receiver Operating Characteristic (ROC) Curve.

6 видео ((всего 46 мин.)), 1 материал для самостоятельного изучения, 2 тестов
6 видео
Bombers and Seagulls: Confusion Matrix8мин
Costs Determine Optimal Threshold4мин
Calculating Positive and Negative Predictive Values5мин
How to Calculate the Area Under the ROC Curve11мин
Binary Classification with More than One Input Variable7мин
1 материал для самостоятельного изучения
Tips for Success10мин
2 практического упражнения
Binary Classification (practice)30мин
Binary Classification (graded)45мин
2 ч. на завершение

Information Measures

In this module, you will learn how to calculate and apply the vitally useful uncertainty metric known as “entropy.” In contrast to the more familiar “probability” that represents the uncertainty that a single outcome will occur, “entropy” quantifies the aggregate uncertainty of all possible outcomes. The entropy measure provides the framework for accountability in data-analytic work. Entropy gives you the power to quantify the uncertainty of future outcomes relevant to your business twice: using the best-available estimates before you begin a project, and then again after you have built a predictive model. The difference between the two measures is the Information Gain contributed by your work.

7 видео ((всего 42 мин.)), 1 материал для самостоятельного изучения, 2 тестов
7 видео
Probability and Entropy7мин
Entropy of a Guessing Game7мин
Dependence and Mutual Information3мин
The Monty Hall Problem8мин
Learning from One Coin Toss, Part 15мин
Learning From One Coin Toss, Part 28мин
1 материал для самостоятельного изучения
Tips for Success10мин
2 практического упражнения
Using the Information Gain Calculator Spreadsheet (practice)30мин
Information Measures (graded)45мин
3 ч. на завершение

Linear Regression

The Linear Correlation measure is a much richer metric for evaluating associations than is commonly realized. You can use it to quantify how much a linear model reduces uncertainty. When used to forecast future outcomes, it can be converted into a “point estimate” plus a “confidence interval,” or converted into an information gain measure. You will develop a fluent knowledge of these concepts and the many valuable uses to which linear regression is put in business data analysis. This module also teaches how to use the Central Limit Theorem (CLT) to solve practical problems. The two topics are closely related because regression and the CLT both make use of a special family of probability distributions called “Gaussians.” You will learn everything you need to know to work with Gaussians in these and other contexts.

11 видео ((всего 73 мин.)), 1 материал для самостоятельного изучения, 3 тестов
11 видео
Introduction to Standardization4мин
Standard Normal Probability Distribution in Excel7мин
Calculating Probabilities from Z-scores4мин
Central Limit Theorem3мин
Algebra with Gaussians6мин
Markowitz Portfolio Optimization12мин
Standardizing x and y Coordinates for Linear Regression6мин
Standardization Simplifies Linear Regression9мин
Modeling Error in Linear Regression10мин
Information Gain from Linear Regression5мин
1 материал для самостоятельного изучения
Tips for Success10мин
3 практического упражнения
The Gaussian (practice)30мин
Regression Models and PIG (practice)45мин
Parametric Models for Regression (graded)45мин
Рецензии: 634Chevron Right


начал новую карьеру, пройдя эти курсы


получил значимые преимущества в карьере благодаря этому курсу

Лучшие отзывы о курсе Mastering Data Analysis in Excel

автор: JEOct 31st 2015

The course deserves a 5-star rating because: (1) content is relevant, (2) the professor is concise and possesses great teaching skills, and (3) the learning modules are applicable to daily problems.

автор: NCDec 20th 2016

Overall, the course material is good with many example. Need a general knowledge with mathematical and statistical from the beginning to pass the exam, because course slide is a little bit fast.



Jana Schaich Borg

Assistant Research Professor
Social Science Research Institute

Daniel Egger

Executive in Residence and Director, Center for Quantitative Modeling
Pratt School of Engineering, Duke University

О Университет Дьюка

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world....

О специализации ''От Excel до MySQL: способы анализа бизнес-данных'

Formulate data questions, explore and visualize large datasets, and inform strategic decisions. In this Specialization, you’ll learn to frame business challenges as data questions. You’ll use powerful tools and methods such as Excel, Tableau, and MySQL to analyze data, create forecasts and models, design visualizations, and communicate your insights. In the final Capstone Project, you’ll apply your skills to explore and justify improvements to a real-world business process. The Capstone Project focuses on optimizing revenues from residential property, and Airbnb, our Capstone’s official Sponsor, provided input on the project design. Airbnb is the world’s largest marketplace connecting property-owner hosts with travelers to facilitate short-term rental transactions. The top 10 Capstone completers each year will have the opportunity to present their work directly to senior data scientists at Airbnb live for feedback and discussion....
От Excel до MySQL: способы анализа бизнес-данных

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Записавшись на курс, вы получите доступ ко всем курсам в специализации, а также возможность получить сертификат о его прохождении. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

  • No. Completion of a Coursera course does not earn you academic credit from Duke; therefore, Duke is not able to provide you with a university transcript. However, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.

Остались вопросы? Посетите Центр поддержки учащихся.