Специализация: общие сведения

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings.
Карьерные результаты учащихся
50%
Начали новую карьеру, пройдя этот продукт (Специализация).
43%
Стали больше зарабатывать или получили повышение.

Сертификат, ссылками на который можно делиться с другими людьми

Получите сертификат по завершении

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Продвинутый уровень

Прибл. 10 месяцев на выполнение

Около 6 ч/неделю

Английский

Субтитры: Английский, Корейский
Карьерные результаты учащихся
50%
Начали новую карьеру, пройдя этот продукт (Специализация).
43%
Стали больше зарабатывать или получили повышение.

Сертификат, ссылками на который можно делиться с другими людьми

Получите сертификат по завершении

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Продвинутый уровень

Прибл. 10 месяцев на выполнение

Около 6 ч/неделю

Английский

Субтитры: Английский, Корейский

Специализация включает несколько курсов: 7

Курс1

Курс 1

Introduction to Deep Learning

4.6
звезд
Оценки: 1,394
Рецензии: 318
Курс2

Курс 2

How to Win a Data Science Competition: Learn from Top Kagglers

4.7
звезд
Оценки: 866
Рецензии: 188
Курс3

Курс 3

Bayesian Methods for Machine Learning

4.6
звезд
Оценки: 528
Рецензии: 155
Курс4

Курс 4

Practical Reinforcement Learning

4.1
звезд
Оценки: 340
Рецензии: 97

Преподаватели

от партнера

Логотип Национальный исследовательский университет "Высшая школа экономики"

Национальный исследовательский университет "Высшая школа экономики"

Логотип одного из отраслевых партнеров

Часто задаваемые вопросы

  • Эта специализация не приравнивается к зачету в университетах, однако некоторые вузы принимают сертификаты на свое усмотрение. Дополнительную информацию уточняйте в своем деканате. Онлайн-дипломы и сертификаты Mastertrack™ от Coursera позволяют получить зачеты.

  • Когда вы оформите подписку, начнется семидневный бесплатный пробный период, в течение которого подписку можно отменить без штрафа. По истечении этого срока вы не сможете вернуть средства, но сможете отменить подписку в любой момент. Ознакомьтесь с нашей политикой возврата средств.

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Да, Coursera предоставляет финансовую помощь учащимся, которые не могут оплатить обучение. Чтобы подать заявление, перейдите по ссылке "Финансовая помощь" слева под кнопкой "Зарегистрироваться". Заполните форму заявления. Если его примут, вы получите уведомление. Обратите внимание: этот шаг необходимо выполнить для каждого курса специализации, в том числе для дипломного проекта. Подробнее

  • Когда вы регистрируетесь на курс, то можете получить доступ ко всем курсам в специализации. Кроме того, вы получаете сертификат о прохождении курса.Просто ознакомиться с содержанием курса можно бесплатно. Если стоимость обучения для вас слишком велика, вы можете подать заявку на финансовую помощь.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • As prerequisites we assume calculus and linear algebra (especially derivatives, matrices and operations with them), probability theory (random variables, distributions, moments), basic programming in python (functions, loops, numpy), basic machine learning (linear models, decision trees, boosting and random forests). Our intended audience are all people who are already familiar with basic machine learning and want to get a hand-on experience of research and development in the field of modern machine learning.

  • We recommend taking the “Intro to Deep Learning” course first as most of the subsequent courses will build on its material. All other courses can be taken in any order.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

Остались вопросы? Посетите Центр поддержки учащихся.