Специализация Алгоритмы
Learn To Think Like A Computer Scientist. Master the fundamentals of the design and analysis of algorithms.
от партнера
Приобретаемые навыки
Специализация: общие сведения
Проект прикладного обучения
Learners will practice and master the fundamentals of algorithms through several types of assessments. Every week, there is a multiple choice quiz to test your understanding of the most important concepts. There are also weekly programming assignments, where you implement one of the algorithms covered in lecture in a programming language of your choosing. Each course concludes with a multiple-choice final exam.
Требуется релевантный опыт.
Требуется релевантный опыт.
О специализации
Пройти курсы
Специализация Coursera — это серия курсов, помогающих в совершенстве овладеть определенным навыком. Можно сразу записаться на специализацию или просмотреть курсы, из которых она состоит и выбрать тот, с которого вы хотите начать. Подписываясь на курс, который входит в специализацию, вы автоматически подписываетесь на всю специализацию. Можно завершить всего один курс, а потом сделать паузу в обучении или в любой момент отменить подписку. Отслеживайте свои курсы и прогресс на панели управления учащегося.
Практический проект
В каждой специализации есть практический проект, который нужно успешно выполнить, чтобы завершить специализацию и получить сертификат. Если для практического проекта в специализации предусмотрен отдельный курс, прежде чем начать его, необходимо завершить все остальные курсы.
Получите сертификат
Когда вы пройдете все курсы и завершите практический проект, вы получите сертификат, которым можно поделиться с потенциальными работодателями и коллегами.

Специализация включает несколько курсов: 4
Divide and Conquer, Sorting and Searching, and Randomized Algorithms
The primary topics in this part of the specialization are: asymptotic ("Big-oh") notation, sorting and searching, divide and conquer (master method, integer and matrix multiplication, closest pair), and randomized algorithms (QuickSort, contraction algorithm for min cuts).
Graph Search, Shortest Paths, and Data Structures
The primary topics in this part of the specialization are: data structures (heaps, balanced search trees, hash tables, bloom filters), graph primitives (applications of breadth-first and depth-first search, connectivity, shortest paths), and their applications (ranging from deduplication to social network analysis).
Greedy Algorithms, Minimum Spanning Trees, and Dynamic Programming
The primary topics in this part of the specialization are: greedy algorithms (scheduling, minimum spanning trees, clustering, Huffman codes) and dynamic programming (knapsack, sequence alignment, optimal search trees).
Shortest Paths Revisited, NP-Complete Problems and What To Do About Them
The primary topics in this part of the specialization are: shortest paths (Bellman-Ford, Floyd-Warshall, Johnson), NP-completeness and what it means for the algorithm designer, and strategies for coping with computationally intractable problems (analysis of heuristics, local search).
от партнера

Стэнфордский университет
The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States.
Часто задаваемые вопросы
Получу ли я зачеты в университете за прохождение специализации?
Can I just enroll in a single course?
Можно ли зарегистрироваться только на один курс?
Can I take the course for free?
Могу ли я пройти курс бесплатно?
Действительно ли это полностью дистанционный курс? Нужно ли мне посещать какие-либо занятия лично?
Сколько времени занимает получение специализации?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Specialization?
Получу ли я зачеты в университете за прохождение специализации?
Остались вопросы? Посетите Центр поддержки учащихся.