Tracking Objects in Video with Particle Filters

от партнера
Coursera Project Network
В этом Проект с консультациями вы:

C​ode a particle filter from scratch in Python and use it to track a target in a real-world video.

Clock1 hour
AdvancedПродвинутые функции
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this one hour long project-based course, you will tackle a real-world computer vision problem. We will be locating and tracking a target in a video shot with a digital camera. We will encounter some of the classic challenges that make computer vision difficult: noisy sensor data, objects that change shape, and occlusion (object hidden from view). We will tackle these challenges with an artificial intelligence technique called a particle filter. By the end of this project, you will have coded a particle filter from scratch using Python and numpy. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

  • Particle Filter
  • Opencv
  • Artificial Intelligence (AI)
  • Python Programming
  • Numpy

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Load video frames

  2. Display video frames

  3. Initialize a particle filter

  4. Compute errors

  5. Compute weights and resample

  6. Apply noise

  7. Optimize the particle filter

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.