Quantitative Text Analysis and Scaling in R

от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Run an unsupervised document scaling model Plot the output of the unsupervised scaling model

Clock1 hour
BeginnerНачинающий
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

By the end of this project, you will learn about the concept of document scaling in textual analysis in R. You will know how to load and pre-process a data set of text documents by converting the data set into a corpus and document feature matrix. You will know how to run an unsupervised document scaling model and explore and plot the scaling outcome.

Навыки, которые вы получите

  • Text Analysis
  • Document Scaling
  • Unsupervised Learning
  • Data Visualization (DataViz)
  • Text Corpus

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Load textual data into R and turn it into a corpus object and understand the concept of document scaling in textual analysis

  2. Extract meta-data from text document filenames and subset the data frame to exclude unwanted data

  3. Tokenize and clean the dataset and convert the data into a document feature matrix

  4. Run an unsupervised document scaling model and explore the output

  5. Plot the output of the unsupervised scaling model

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.