Using Descriptive Statistics to Analyze Data in R

4.5
звезд
Оценки: 49
от партнера
Coursera Project Network
1,744 уже зарегистрированы
В этом Проект с консультациями вы:

Learn how to calculate descriptive statistical metrics in order to describe a dataset in basic R

Create a data quality report file (exported to Excel in CSV format) from a dataset loaded in R

Clock1.5 hours
BeginnerНачинающий
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

By the end of this project, you will create a data quality report file (exported to Excel in CSV format) from a dataset loaded in R, a free, open-source program that you can download. You will learn how to use the following descriptive statistical metrics in order to describe a dataset and how to calculate them in basic R with no additional libraries. - minimum value - maximum value - average value - standard deviation - total number of values - missing values - unique values - data types You will then learn how to record the statistical metrics for each column of a dataset using a custom function created by you in R. The output of the function will be a ready-to-use data quality report. Finally, you will learn how to export this report to an external file. A data quality report can be used to identify outliers, missing values, data types, anomalies, etc. that are present in your dataset. This is the first step to understand your dataset and let you plan what pre-processing steps are required to make your dataset ready for analysis. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

Data QualityStatisticsR Programming

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Load and view a real-world dataset in RStudio

  2. Calculate “Measure of Frequency” metrics

  3. Calculate “Measure of Central Tendency” metrics

  4. Calculate “Measure of Dispersion” metrics

  5. Use R’s in-built functions for additional data quality metrics

  6. Create a custom R function to calculate descriptive statistics on any given dataset

  7. Export the results of the descriptive statistics to a data quality report file

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Рецензии

Лучшие отзывы о курсе USING DESCRIPTIVE STATISTICS TO ANALYZE DATA IN R

Посмотреть все отзывы

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.