K-Means Clustering 101: World Happiness Report

от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Understand how to leverage the power of machine learning to perform unsupervised segmentation

Learn how to use Plotly to visualize geographical data

Learn how to obtain the optimal number of clusters using the elbow method

Clock1.5 hours
BeginnerНачинающий
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this case study, we will train an unsupervised machine learning algorithm to cluster countries based on features such as economic production, social support, life expectancy, freedom, absence of corruption, and generosity. The World Happiness Report determines the state of global happiness. The happiness scores and rankings data has been collected by asking individuals to rank their life from 0 (worst possible life) to 10 (best possible life).

Навыки, которые вы получите

  • Segmentation
  • visualization
  • Machine Learning
  • Python Programming
  • Artificial Intelligence(AI)

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Understand the problem statement and business case

  2. Import datasets and libraries

  3. Perform exploratory data analysis

  4. Perform data visualization - part 1

  5. Perform data visualization - part 1

  6. Prepare the data to feed the clustering model

  7. Understand the intuition behind k-means clustering algorithm

  8. Find the optimal number of clusters

  9. Apply k-means using scikit-learn to perform segmentation

  10. Visualize the clusters

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.