Вернуться к Mathematics for Machine Learning: Linear Algebra

# Отзывы учащихся о курсе Mathematics for Machine Learning: Linear Algebra от партнера Имперский колледж Лондона

4.7
звезд
Оценки: 9,593
Рецензии: 1,937

## О курсе

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works. Since we're aiming at data-driven applications, we'll be implementing some of these ideas in code, not just on pencil and paper. Towards the end of the course, you'll write code blocks and encounter Jupyter notebooks in Python, but don't worry, these will be quite short, focussed on the concepts, and will guide you through if you’ve not coded before. At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning....

## Лучшие рецензии

CS
31 мар. 2018 г.

Amazing course, great instructors. The amount of working linear algebra knowledge you get from this single course is substantial. It has already helped solidify my learning in other ML and AI courses.

PL
25 авг. 2018 г.

Great way to learn about applied Linear Algebra. Should be fairly easy if you have any background with linear algebra, but looks at concepts through the scope of geometric application, which is fresh.

Фильтр по:

## 151–175 из 1,929 отзывов о курсе Mathematics for Machine Learning: Linear Algebra

автор: Gabriel W

23 мая 2020 г.

I did the 3 specialization lessons "Mathematics for Machine Learning" (Linear Algebra, Multivariate Calculus, PCA). I really had a lot of fun and learnings in the first one (5 stars for Linear Algebra): David Dye is an increadible teacher. Thank you for your enthousiastic Knowledge Transmission: Mathematics are very cool with you!

автор: Niju M N

9 апр. 2020 г.

This course lays the groundwork for the Algebra required in ML. The basics are covered really well.There are quizzes and assignments to strengthen the ideas learnt in the course.At times felt the assignments are very easy .It can be used to brush up the basic Algebra or learn from Zero. The instructor explains every thing clearly

автор: Paul K M

9 окт. 2019 г.

This course gives a good overview of linear algebra using python numpy arrays. It doesn't go super deep into the topic, but I wouldn't call it superficial. It requires you to do some basic vector and matrix algebra by hand, build agorithms to do some of those calculations, and introduces some numpy methods for those operations.

автор: Michelle W

3 июля 2018 г.

Excellent course. I have never taken a linear algebra course before, so it took me longer to complete this as I had to learn the basics to follow the material in this course. The course is designed as a review of linear algebra, but if you are motivated and have time, it's possible to complete without having had linear algebra.

автор: Alex H

9 февр. 2020 г.

This is exactly what I wanted from an online course! I took linear algebra at university decades ago, but made the mistake of learning just enough to pass the next test. The lectures in this course laid out and solidified concepts for me which were previously abstract. The presenters were clear, concise and, I daresay, fun!

автор: Benjamin E

24 февр. 2020 г.

This is a good course that allows you to develop a high and low level understanding of linear algebra...unlike a certain university professor I had who made us do 5x5 matrix transformations by hand. I highly recommend doing outside reading alongside the course to expand your knowledge, especially regarding the coding aspects.

автор: Mthandeni M C

14 апр. 2020 г.

Great balance between Mathematical rigor and Computer Science applications. This course is deliberately not easy to ensure you leave with a strong intuition behind the Mathematics of Machine Learning. Python exercises brings this cause alive. It has given me the confidence to continue with my Machine Engineering journey.

автор: Shubham D

9 мая 2018 г.

Amazing course.Do not let the easy content distract you from the fact that this is one of the best/well taught MOOCs on Coursera.These professors are experts at helping student develop an intuition for mathematics.Way different from what was taught in my school/university and also much more useful in a practical sense.

автор: Andrei Z

3 янв. 2021 г.

Perfect course for newcomers that want to understand basic concepts of Linear Algebra. Very beginner-friendly, especially programming assignments where you get full guidance with the task. Would certainly reccoment to anybody who has interest in this subject, but was too afraid to begin studying it out of complexity.

автор: Luka

16 мая 2020 г.

I enjoy attending this course. I consider this course really good, mostly due to a lot of intuitive examples about particular subjects of study, explanations that were clear and enthusiastic professors. Finishing this course gave me motivation to learn more about machine learning and mathematics that it's based upon.

3 окт. 2018 г.

The course and the content is quite fruitful for anyone who wants to go ahead in the area of Machine Learning. The course instructor gives a detailed understanding of each topic and insight of the methods of vector calculus and linear algebra. For building the basic fundamentals of ML, this course is must for anyone.

автор: Christos P

2 июля 2018 г.

It was honestly great. The first two weeks didn't have much new for someone who'd already taken Linear Algebra, but the last three weeks were very informational. It really helped me understand the concepts geometrically/spatially in ways I hadn't seen before when I had taken general linear algebra at my university.

автор: Lance R C

23 нояб. 2020 г.

Course content is very useful and intuitive. I definitely feel much more confident with my Linear Algebra.

One thing I would suggest is to provide more exercises / practice quizzes on algebraic manipulation with matrices. I think this would immensely help in following the proofs and building a more solid intuition.

автор: Daniel G

29 мая 2019 г.

This course brilliantly delivered on each of its intended learning objectives in an engaging and non-threatening way - I would encourage anyone interested in this topic, regardless of their background. The course instructors are excellent, and the forum discussions are extremely helpful if/when you are ever stuck.

автор: Ashutosh M

6 мар. 2019 г.

The course is great for those who are new to machine learning and want to start from mathematics behind it. The course focuses on vector and matrices and how to solve System of Linear Equations using it. You will develop intuition of what matrix transformations are and how to use change in basis to your advantage.

автор: Jitesh J T

12 дек. 2019 г.

Superb lectures and lucid explanations of the topics make this course one of my favorites! The video quality was superb and the course content, assignments and degree of difficulty was wonderfully designed to test the skills. Would definitely attend more courses from Imperial college.

Thank you

Dr. Jitesh Tripathi

автор: Sharan S M

5 дек. 2019 г.

Great course. Really enjoyed it because the instructors teach well. Also, the practice quizzes are useful for understanding the content. I was able to do all the assignment thanks to all the practice that they have given. Great course and I recommend that anybody interested in machine learning take this course.

автор: Ashley Z

17 окт. 2019 г.

Really recommend to all who would like to dive into machine learning with some mathematical background in vectors, matrices and eigenstuff. The instructors are very good and the homework/programming assignments are manageable while giving good insights into the application of the formulas learned in the course.

автор: Maksim U

14 окт. 2018 г.

This is a great course. All explanations and examples are easy and useful, the tasks are challenging but solvable. Certain points of the course might be unclear for students with limited math knowledge, some tasks will make you look for extra info elsewhere. But all in all I would really recommend this course.

автор: Harsh D

6 мар. 2019 г.

Great Course, exceptional in every way, gives you practice drill down some of the concepts, and handy programming assignments that are fun to work with, while not a complete refresher the course is good enough to grasp essence of linear algebra to build intuitive math, rather than classical way of teaching.

автор: Joaquin R

5 нояб. 2018 г.

It has been a while since I took Linear Algebra in my undergraduate years. This course has improved my knowledge of Linear Algebra and most especially eigen theory. This will greatly enhance my understanding of Machine Learning. Thank you to the professors for imparting their knowledge of Linear Algebra.

автор: Sanjay B

1 нояб. 2020 г.

Good program for introduction level, almost no prior mathematical or programming skill required beyond high school level.

Designed to introduce key concepts on which further understanding can be built.

Nicely presented, and made interesting through quizzes es, assessments and simple programming assignments.

16 июля 2020 г.

I have studied linear algebra back in high school and in undergraduate studies which were full of hand calculated computation that makes me feel bore about L.A but thanks to this course which present Linear Algebra in a really beautiful that can help you built an intuition about this branch of mathematics

автор: Mingyang Z

6 сент. 2019 г.

Excellent course with clear instruction video to explain the concept of linear algebra. The assignment is relatively challenging to help practice the learnt concept. I wish I could learn more about some special characteristic of matrix, such as block matrix, and how to compute singular value decomposition.

автор: J. W

10 мая 2018 г.

I took Linear Algebra in undergrad nearly 20 years ago. The instructors for this course developed the inuition behind core concepts in such a way that it made the material very accessible and provided a great basis for further study using supplementary material. I am pleased with the overall presentation.