Об этом курсе
Недавно просмотрено: 89,142

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Начальный уровень


Субтитры: Английский

Приобретаемые навыки

Simple AlgorithmPython ProgrammingProblem SolvingComputation

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Начальный уровень


Субтитры: Английский

Программа курса: что вы изучите

3 ч. на завершение

Pillars of Computational Thinking

Computational thinking is an approach to solving problems using concepts and ideas from computer science, and expressing solutions to those problems so that they can be run on a computer. As computing becomes more and more prevalent in all aspects of modern society -- not just in software development and engineering, but in business, the humanities, and even everyday life -- understanding how to use computational thinking to solve real-world problems is a key skill in the 21st century. Computational thinking is built on four pillars: decomposition, pattern recognition, data representation and abstraction, and algorithms. This module introduces you to the four pillars of computational thinking and shows how they can be applied as part of the problem solving process.

6 видео ((всего 44 мин.)), 6 тестов
6 видео
1.4 Data Representation and Abstraction7мин
1.5 Algorithms8мин
1.6 Case Studies11мин
4 практического упражнения
1.2 Decomposition10мин
1.3 Pattern Recognition10мин
1.4 Data Representation and Abstraction15мин
1.5 Algorithms15мин
4 ч. на завершение

Expressing and Analyzing Algorithms

When we use computational thinking to solve a problem, what we’re really doing is developing an algorithm: a step-by-step series of instructions. Whether it’s a small task like scheduling meetings, or a large task like mapping the planet, the ability to develop and describe algorithms is crucial to the problem-solving process based on computational thinking. This module will introduce you to some common algorithms, as well as some general approaches to developing algorithms yourself. These approaches will be useful when you're looking not just for any answer to a problem, but the best answer. After completing this module, you will be able to evaluate an algorithm and analyze how its performance is affected by the size of the input so that you can choose the best algorithm for the problem you’re trying to solve.

7 видео ((всего 69 мин.)), 10 тестов
7 видео
2.4 Binary Search11мин
2.5 Brute Force Algorithms13мин
2.6 Greedy Algorithms9мин
2.7 Case Studies12мин
6 практического упражнения
2.1 Finding the Largest Value10мин
2.2 Linear Search10мин
2.3 Algorithmic Complexity10мин
2.4 Binary Search10мин
2.5 Brute Force Algorithms15мин
2.6 Greedy Algorithms10мин
4 ч. на завершение

Fundamental Operations of a Modern Computer

Computational thinking is a problem-solving process in which the last step is expressing the solution so that it can be executed on a computer. However, before we are able to write a program to implement an algorithm, we must understand what the computer is capable of doing -- in particular, how it executes instructions and how it uses data. This module describes the inner workings of a modern computer and its fundamental operations. Then it introduces you to a way of expressing algorithms known as pseudocode, which will help you implement your solution using a programming language.

6 видео ((всего 46 мин.)), 10 тестов
6 видео
3.4 von Neumann Architecture Control Flow5мин
3.5 Expressing Algorithms in Pseudocode8мин
3.6 Case Studies10мин
5 практического упражнения
3.1 A History of the Computer10мин
3.2 Intro to the von Neumann Architecture10мин
3.3 von Neumann Architecture Data10мин
3.4 von Neumann Architecture Control Flow10мин
3.5 Expressing Algorithms in Pseudocode10мин
7 ч. на завершение

Applied Computational Thinking Using Python

Writing a program is the last step of the computational thinking process. It’s the act of expressing an algorithm using a syntax that the computer can understand. This module introduces you to the Python programming language and its core features. Even if you have never written a program before -- or never even considered it -- after completing this module, you will be able to write simple Python programs that allow you to express your algorithms to a computer as part of a problem-solving process based on computational thinking.

9 видео ((всего 91 мин.)), 12 материалов для самостоятельного изучения, 12 тестов
9 видео
4.4 Lists7мин
4.5 Iteration14мин
4.6 Functions10мин
4.7 Classes and Objects9мин
4.8 Case Studies11мин
4.9 Course Conclusion8мин
12 материала для самостоятельного изучения
Programming on the Coursera Platform10мин
Python Playground
Variables Programming Activity20мин
Solution to Variables Programming Activity10мин
Conditionals Programming Activity20мин
Solution to Conditionals Programming Activity10мин
Solution to Lists Programming Assignment5мин
Solution to Loops Programming Assignment10мин
Solution to Functions Programming Assignment10мин
Solution to Challenge Programming Assignment10мин
Solution to Classes and Objects Programming Assignment10мин
Solution to Project Part 410мин
12 практического упражнения
4.2 Variables10мин
4.3 Conditional Statements5мин
4.4 Lists10мин
Lists Programming Assignment15мин
4.5 Iteration10мин
Loops Programming Assignment30мин
4.6 Functions10мин
Functions Programming Assignment20мин
(Optional) Challenge Programming Assignment20мин
4.7 Classes and Objects10мин
Classes and Objects Programming Assignment20мин
Project Part 4: Implementing the Solution in Python25мин
Рецензии: 85Chevron Right


начал новую карьеру, пройдя эти курсы


получил значимые преимущества в карьере благодаря этому курсу

Лучшие отзывы о курсе Computational Thinking for Problem Solving

автор: JDec 19th 2018

Excellent course for beginners with enough depth, programming and computational theory to increase their computer science knowledge to a higher level. It builds a good foundation of how computers work

автор: AAFeb 4th 2019

The course is very well-designed and it helped me develop understand how to apply computational thinking in solving various types of problems as well as acquire basic skills of programming in Python.



Susan Davidson

Weiss Professor
Computer & Information Science

Chris Murphy

Associate Professor of Practice
Computer & Information Science

О Пенсильванский университет

The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies. ...

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Оплатив сертификацию, вы получите доступ ко всем материалам курса, включая оцениваемые задания. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

  • No, definitely not! This course is intended for anyone who has an interest in approaching problems more systematically, developing more efficient solutions, and understanding how computers can be used in the problem solving process. No prior computer science or programming experience is required.

  • Some parts of the course assume familiarity with basic algebra, trigonometry, mathematical functions, exponents, and logarithms. If you don’t remember those concepts or never learned them, don’t worry! As long as you’re comfortable with multiplication, you should still be able to follow along. For everything else, we’ll provide links to references that you can use as a refresher or as supplemental material.

  • This course will help you discover whether you have an aptitude for computational thinking. This is a useful predictor of success in the Master of Computer and Information Technology program at the University of Pennsylvania, which is offered both on-campus and online. In this course you will learn from MCIT instructors and become familiar with the quality and style of MCIT Online courses.

    If you have a bachelor's degree and are interested in learning more about computational thinking, we encourage you to apply to MCIT On-campus (http://www.cis.upenn.edu/prospective-students/graduate/mcit.php) or MCIT Online (https://onlinelearning.seas.upenn.edu/mcit/). Please mention that you have completed this course in the application.

  • Use these links to learn more about MCIT:

    MCIT On-campus: http://www.cis.upenn.edu/prospective-students/graduate/mcit.php

    MCIT Online: https://onlinelearning.seas.upenn.edu/mcit/

Остались вопросы? Посетите Центр поддержки учащихся.