Специализация: общие сведения

Недавно просмотрено: 22,121
Continue developing your skills in TensorFlow as you learn to navigate through a wide range of deployment scenarios and discover new ways to use data more effectively when training your machine learning models. In this four-course Specialization, you’ll learn how to get your machine learning models into the hands of real people on all kinds of devices. Start by understanding how to train and run machine learning models in browsers and in mobile applications. Learn how to leverage built-in datasets with just a few lines of code, learn about data pipelines with TensorFlow data services, use APIs to control data splitting, process all types of unstructured data and retrain deployed models with user data while maintaining data privacy. Apply your knowledge in various deployment scenarios and get introduced to TensorFlow Serving, TensorFlow, Hub, TensorBoard, and more. Industries all around the world are adopting Artificial Intelligence. This Specialization from Laurence Moroney and Andrew Ng will help you develop and deploy machine learning models across any device or platform faster and more accurately than ever. This Specialization builds upon skills learned in the TensorFlow in Practice Specialization. We recommend learners complete that Specialization prior to enrolling in TensorFlow: Data and Deployment.
Сертификат, ссылками на который можно делиться с другими людьми
Получите сертификат по завершении
Только онлайн-курсы
Начните сейчас и учитесь по собственному графику.
Гибкий график
Установите гибкие сроки сдачи заданий.
Промежуточный уровень
Прибл. 4 месяца на выполнение
Около 4 ч/неделю
Английский
Субтитры: Английский
Сертификат, ссылками на который можно делиться с другими людьми
Получите сертификат по завершении
Только онлайн-курсы
Начните сейчас и учитесь по собственному графику.
Гибкий график
Установите гибкие сроки сдачи заданий.
Промежуточный уровень
Прибл. 4 месяца на выполнение
Около 4 ч/неделю
Английский
Субтитры: Английский

Специализация включает несколько курсов: 4

Курс1

Курс 1

Browser-based Models with TensorFlow.js

4.7
звезд
Оценки: 462
Рецензии: 117
Курс2

Курс 2

Device-based Models with TensorFlow Lite

4.6
звезд
Оценки: 262
Рецензии: 59
Курс3

Курс 3

Data Pipelines with TensorFlow Data Services

4.1
звезд
Оценки: 187
Рецензии: 56
Курс4

Курс 4

Advanced Deployment Scenarios with TensorFlow

4.6
звезд
Оценки: 156
Рецензии: 27

от партнера

Логотип deeplearning.ai

deeplearning.ai

Часто задаваемые вопросы

  • Когда вы оформите подписку, начнется семидневный бесплатный пробный период, в течение которого подписку можно отменить без штрафа. По истечении этого срока вы не сможете вернуть средства, но сможете отменить подписку в любой момент. Ознакомьтесь с нашей политикой возврата средств.

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Да, Coursera предоставляет финансовую помощь учащимся, которые не могут оплатить обучение. Чтобы подать заявление, перейдите по ссылке "Финансовая помощь" слева под кнопкой "Зарегистрироваться". Заполните форму заявления. Если его примут, вы получите уведомление. Обратите внимание: этот шаг необходимо выполнить для каждого курса специализации, в том числе для дипломного проекта. Подробнее

  • Когда вы регистрируетесь на курс, то можете получить доступ ко всем курсам в специализации. Кроме того, вы получаете сертификат о прохождении курса.Просто ознакомиться с содержанием курса можно бесплатно. Если стоимость обучения для вас слишком велика, вы можете подать заявку на финансовую помощь.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Эта специализация не приравнивается к зачету в университетах, однако некоторые вузы принимают сертификаты на свое усмотрение. Дополнительную информацию уточняйте в своем деканате.

  • Эта специализация не приравнивается к зачету в университетах, однако некоторые вузы принимают сертификаты на свое усмотрение. Дополнительную информацию уточняйте в своем деканате. Онлайн-дипломы и сертификаты Mastertrack™ от Coursera позволяют получить зачеты.

  • We suggest taking the TensorFlow in Practice Specialization first to develop basic familiarity with modeling in TensorFlow. You should also be comfortable using JavaScript and Swift, which you'll use in Courses 1 and 2. If you want to get a deeper, foundational understanding of how neural networks work, you can take the Deep Learning Specialization.

Остались вопросы? Посетите Центр поддержки учащихся.