Специализация: общие сведения

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Промежуточный уровень

Прибл. 2 месяца на выполнение

Около 8 ч/неделю

Английский

Субтитры: Английский...

Приобретаемые навыки

EvaluationFactorizationRecommender SystemsCollaboration

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Промежуточный уровень

Прибл. 2 месяца на выполнение

Около 8 ч/неделю

Английский

Субтитры: Английский...

Специализация: принцип работы

Пройти курсы

Специализация Coursera — это серия курсов, помогающих в совершенстве овладеть определенным навыком. Можно сразу записаться на специализацию или просмотреть курсы, из которых она состоит и выбрать тот, с которого вы хотите начать. Подписываясь на курс, который входит в специализацию, вы автоматически подписываетесь на всю специализацию. Можно завершить всего один курс, а потом сделать паузу в обучении или в любой момент отменить подписку. Отслеживайте свои курсы и прогресс на панели управления учащегося.

Практический проект

В каждой специализации есть практический проект, который нужно успешно выполнить, чтобы завершить специализацию и получить сертификат. Если для практического проекта в специализации предусмотрен отдельный курс, прежде чем начать его, необходимо завершить все остальные курсы.

Получите сертификат

Когда вы пройдете все курсы и завершите практический проект, вы получите сертификат, которым можно поделиться с потенциальными работодателями и коллегами.

how it works

Специализация включает несколько курсов: 5

Курс1

Introduction to Recommender Systems: Non-Personalized and Content-Based

4.5
Оценки: 376
Рецензии: 74
This course, which is designed to serve as the first course in the Recommender Systems specialization, introduces the concept of recommender systems, reviews several examples in detail, and leads you through non-personalized recommendation using summary statistics and product associations, basic stereotype-based or demographic recommendations, and content-based filtering recommendations. After completing this course, you will be able to compute a variety of recommendations from datasets using basic spreadsheet tools, and if you complete the honors track you will also have programmed these recommendations using the open source LensKit recommender toolkit. In addition to detailed lectures and interactive exercises, this course features interviews with several leaders in research and practice on advanced topics and current directions in recommender systems....
Курс2

Nearest Neighbor Collaborative Filtering

4.3
Оценки: 178
Рецензии: 42
In this course, you will learn the fundamental techniques for making personalized recommendations through nearest-neighbor techniques. First you will learn user-user collaborative filtering, an algorithm that identifies other people with similar tastes to a target user and combines their ratings to make recommendations for that user. You will explore and implement variations of the user-user algorithm, and will explore the benefits and drawbacks of the general approach. Then you will learn the widely-practiced item-item collaborative filtering algorithm, which identifies global product associations from user ratings, but uses these product associations to provide personalized recommendations based on a user's own product ratings....
Курс3

Recommender Systems: Evaluation and Metrics

4.3
Оценки: 132
Рецензии: 20
In this course you will learn how to evaluate recommender systems. You will gain familiarity with several families of metrics, including ones to measure prediction accuracy, rank accuracy, decision-support, and other factors such as diversity, product coverage, and serendipity. You will learn how different metrics relate to different user goals and business goals. You will also learn how to rigorously conduct offline evaluations (i.e., how to prepare and sample data, and how to aggregate results). And you will learn about online (experimental) evaluation. At the completion of this course you will have the tools you need to compare different recommender system alternatives for a wide variety of uses....
Курс4

Matrix Factorization and Advanced Techniques

4.2
Оценки: 114
Рецензии: 17
In this course you will learn a variety of matrix factorization and hybrid machine learning techniques for recommender systems. Starting with basic matrix factorization, you will understand both the intuition and the practical details of building recommender systems based on reducing the dimensionality of the user-product preference space. Then you will learn about techniques that combine the strengths of different algorithms into powerful hybrid recommenders....

Преподаватели

Avatar

Joseph A Konstan

Distinguished McKnight Professor and Distinguished University Teaching Professor
Computer Science and Engineering
Avatar

Michael D. Ekstrand

Assistant Professor
Dept. of Computer Science, Boise State University

О Миннесотский университет

The University of Minnesota is among the largest public research universities in the country, offering undergraduate, graduate, and professional students a multitude of opportunities for study and research. Located at the heart of one of the nation’s most vibrant, diverse metropolitan communities, students on the campuses in Minneapolis and St. Paul benefit from extensive partnerships with world-renowned health centers, international corporations, government agencies, and arts, nonprofit, and public service organizations....

Часто задаваемые вопросы

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Most learners should be able to complete the specialization in 20-26 weeks.

  • Basic statistics or college algebra, and an ability to work with spreadsheets. For the honors track, you should also be comfortable implementing software in Java.

  • While each component can be useful by itself, the courses do build on each other and should be taken in order.

  • The University of Minnesota does not offer credit for completing this specialization. If you are enrolled elsewhere, you may wish to speak with your advisor or program staff to find out whether this specialization could be used for independent study credit.

  • You will understand and be able to apply the major families of recommender algorithms: non-personalized, product association, content-based, nearest-neighbor, and matrix factorization. You will know and be able to apply a variety of recommender metrics, and will be able to use this knowledge to match the correct recommender system to appplications.

  • The honors track is an optional track where learners add programming recommenders in the open source LensKit toolkit. You should be comfortable with basic data structures, algorithms, and Java to attempt the honors track.

  • This specialization is an extended and updated version of the two prior versions of Introduction to Recommender Systems that we've offered through Coursera. About 50% of the video and 80% of the assessment material are new, and there is an honors track with programming assignments (which existed in the first version of the course only, and have been re-done for this specialization). The Capstone is entirely new.

Остались вопросы? Посетите Центр поддержки учащихся.