Специализация: общие сведения

Недавно просмотрено: 1,755
Was ist maschinelles Lernen und welche Probleme lassen sich damit lösen? Was sind die fünf Phasen zur Umsetzung eines für ML geeigneten Anwendungsfalls und warum darf keine dieser Phasen übersprungen werden? Warum sind neuronale Netze gerade so beliebt? Wie können Sie ein Projekt für betreutes Lernen gestalten und mithilfe des Gradientenverfahrens und sinnvoll erstellten Datasets eine gute, generalisierbare Lösung finden? In diesem Kurs lernen Sie, verteilte Modelle für ML zu schreiben, die in TensorFlow skaliert werden, das Training dieser Modelle horizontal zu skalieren und leistungsstarke Vorhersagen zu erstellen. Wir gehen darauf ein, wie Sie Rohdaten so in Merkmale umwandeln, dass ML wichtige Eigenschaften dieser Daten erlernen kann und menschliche Einblicke in das Problem zulässt. Schließlich lernen Sie, die richtige Mischung aus Parametern zu verwenden, um präzise und generalisierte Modelle zu erstellen, und Sie erhalten eine Einführung in die Theorie zum Lösen bestimmter Arten von ML-Problemen. Auf diese Weise gewinnen Sie ein umfassendes Verständnis von ML. Zuerst erstellen Sie eine auf ML ausgerichtete Strategie. Dann fahren Sie mit Modelltraining, Optimierung und Produktentwicklung fort. Hierbei helfen Ihnen praxisorientierte Labs der Google Cloud Platform. >>> Mit Ihrer Teilnahme an dieser Spezialisierung stimmen Sie den Nutzungsbedingungen von Qwiklabs zu, die Sie in den FAQs und unter folgendem Link finden: https://qwiklabs.com/terms_of_service <<<
Сертификат, ссылками на который можно делиться с другими людьми
Получите сертификат по завершении
Только онлайн-курсы
Начните сейчас и учитесь по собственному графику.
Гибкий график
Установите гибкие сроки сдачи заданий.
Промежуточный уровень
Прибл. 3 месяца на выполнение
Около 4 ч/неделю
Немецкий
Субтитры: Немецкий, Французский, Португальский (бразильский), Английский, Испанский, Японский...
Сертификат, ссылками на который можно делиться с другими людьми
Получите сертификат по завершении
Только онлайн-курсы
Начните сейчас и учитесь по собственному графику.
Гибкий график
Установите гибкие сроки сдачи заданий.
Промежуточный уровень
Прибл. 3 месяца на выполнение
Около 4 ч/неделю
Немецкий
Субтитры: Немецкий, Французский, Португальский (бразильский), Английский, Испанский, Японский...

Специализация включает несколько курсов: 5

Курс1

Курс 1

How Google does Machine Learning auf Deutsch

Курс2

Курс 2

Launching into Machine Learning auf Deutsch

Курс3

Курс 3

Intro to TensorFlow auf Deutsch

Курс4

Курс 4

Feature Engineering auf Deutsch

от партнера

Логотип Google Cloud

Google Cloud

Часто задаваемые вопросы

  • Когда вы оформите подписку, начнется семидневный бесплатный пробный период, в течение которого подписку можно отменить без штрафа. По истечении этого срока вы не сможете вернуть средства, но сможете отменить подписку в любой момент. Ознакомьтесь с нашей политикой возврата средств.

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Да, Coursera предоставляет финансовую помощь учащимся, которые не могут оплатить обучение. Чтобы подать заявление, перейдите по ссылке "Финансовая помощь" слева под кнопкой "Зарегистрироваться". Заполните форму заявления. Если его примут, вы получите уведомление. Обратите внимание: этот шаг необходимо выполнить для каждого курса специализации, в том числе для дипломного проекта. Подробнее

  • Когда вы регистрируетесь на курс, то можете получить доступ ко всем курсам в специализации. Кроме того, вы получаете сертификат о прохождении курса.Просто ознакомиться с содержанием курса можно бесплатно. Если стоимость обучения для вас слишком велика, вы можете подать заявку на финансовую помощь.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Эта специализация не приравнивается к зачету в университетах, однако некоторые вузы принимают сертификаты на свое усмотрение. Дополнительную информацию уточняйте в своем деканате.

Остались вопросы? Посетите Центр поддержки учащихся.