About this Специализация
Только онлайн-курсы

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Гибкий график

Гибкий график

Установите гибкие сроки сдачи заданий.
Промежуточный уровень

Промежуточный уровень

Часов на завершение

Прибл. 2 месяца на выполнение

Около 10 ч/неделю
Доступные языки

Английский

Субтитры: Английский, Французский, Португальский (бразильский), Немецкий, Испанский, Японский...
Только онлайн-курсы

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Гибкий график

Гибкий график

Установите гибкие сроки сдачи заданий.
Промежуточный уровень

Промежуточный уровень

Часов на завершение

Прибл. 2 месяца на выполнение

Около 10 ч/неделю
Доступные языки

Английский

Субтитры: Английский, Французский, Португальский (бразильский), Немецкий, Испанский, Японский...

How the Специализация Works

Пройти курсы

Специализация Coursera — это серия курсов, помогающих в совершенстве овладеть определенным навыком. Можно сразу записаться на специализацию или просмотреть курсы, из которых она состоит и выбрать тот, с которого вы хотите начать. Подписываясь на курс, который входит в специализацию, вы автоматически подписываетесь на всю специализацию. Можно завершить всего один курс, а потом сделать паузу в обучении или в любой момент отменить подписку. Отслеживайте свои курсы и прогресс на панели управления учащегося.

Практический проект

В каждой специализации есть практический проект, который нужно успешно выполнить, чтобы завершить специализацию и получить сертификат. Если для практического проекта в специализации предусмотрен отдельный курс, прежде чем начать его, необходимо завершить все остальные курсы.

Получите сертификат

Когда вы пройдете все курсы и завершите практический проект, вы получите сертификат, которым можно поделиться с потенциальными работодателями и коллегами.

how it works

Специализация включает несколько курсов: 5

Курс1

How Google does Machine Learning auf Deutsch

Was ist maschinelles Lernen und welche Probleme lassen sich damit lösen? Für Google geht es beim maschinellen Lernen (ML) mehr um Logik als nur um Daten. In diesem Kurs erfahren Sie, warum dieser Ansatz beim Erstellen einer Pipeline aus ML-Modellen nützlich ist. Außerdem erläutern wir die fünf Phasen zur Umsetzung eines für ML geeigneten Anwendungsfalls und warum keine dieser Phasen übersprungen werden darf. Zum Abschluss besprechen wir die Verzerrung, die durch ML entstehen kann, und erklären, wie man sie erkennt....
Курс2

Launching into Machine Learning auf Deutsch

Nach einem ersten Überblick über die Geschichte von ML erfahren Sie in diesem Kurs, weshalb heute mithilfe neuronaler Netzwerke viele Probleme so erfolgreich gelöst werden können. Wir erklären anschließend, wie Sie überwachtes Lernen zur Problemlösung einrichten und mithilfe des Gradientenverfahrens gute Ergebnisse erzielen. Dazu sind Datasets erforderlich, mit denen die Generalisierung möglich ist. In diesem Kurs zeigen wir Ihnen, wie Sie Datasets auf wiederholbare Weise erstellen, um Experimente zu ermöglichen. Kursziele: Erkennen, warum Deep Learning derzeit beliebt ist Modelle anhand von Verlustfunktionen und Leistungsmesswerten optimieren und auswerten Häufige Probleme rund um maschinelles Lernen minimieren Wiederholbare und skalierbare Datasets zum Trainieren, Auswerten und Testen erstellen...
Курс3

Intro to TensorFlow auf Deutsch

Dies ist eine Einführung in die Grundlagen von TensorFlow. Darin werden die Konzepte und APIs erläutert, die Sie zum Schreiben verteilter Modelle für maschinelles Lernen benötigen. Außerdem wird anhand eines TensorFlow-Modells erklärt, wie Sie Modelle in großem Umfang trainieren und mit Cloud Machine Learning Engine effektive Vorhersagen treffen können. Lernziele: Modelle für maschinelles Lernen in TensorFlow erstellen Diverse Herausforderungen mit TensorFlow-Bibliotheken lösen Gängige Codefehler in TensorFlow beheben Mit tf.estimator ein ML-Modell erstellen, trainieren und bewerten ML-Modelle im großen Umfang mit Cloud ML Engine trainieren, bereitstellen und in der Produktion verwenden...
Курс4

Feature Engineering auf Deutsch

Sie möchten erfahren, wie Sie die Genauigkeit Ihrer maschinellen Lernmodelle verbessern oder wie Sie herausfinden, welche Datenspalten die nützlichsten Funktionen ergeben? Willkommen zum Feature Engineering mit der Google Cloud Platform. Wir erörtern in diesem Kurs nützliche und nutzlose Funktionen und wie Sie diese für die optimale Nutzung in Ihren maschinellen Lernmodellen vorverarbeiten und umwandeln. In praktischen, interaktiven Labs lernen Sie, Funktionen auszuwählen und mit der Google Cloud Platform vorzuverarbeiten. Unsere Kursleiter präsentieren Ihnen die Code-Lösungen, die zu Referenzzwecken auch öffentlich gemacht werden, während Sie an Ihren eigenen zukünftigen ML-Projekten arbeiten....

Преподаватель

О Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Часто задаваемые вопросы

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Эта специализация не приравнивается к зачету в университетах, однако некоторые вузы принимают сертификаты на свое усмотрение. Дополнительную информацию уточняйте в своем деканате.

Остались вопросы? Посетите Центр поддержки учащихся.