Специализация: общие сведения

Недавно просмотрено: 45,909
Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку.
Карьерные результаты учащихся
75%
Начали новую карьеру, пройдя этот продукт (Специализация).
50%
Стали больше зарабатывать или получили повышение.

Сертификат, ссылками на который можно делиться с другими людьми

Получите сертификат по завершении

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Промежуточный уровень

Прибл. 7 месяца на выполнение

Около 8 ч/неделю

Русский

Субтитры: Русский
Карьерные результаты учащихся
75%
Начали новую карьеру, пройдя этот продукт (Специализация).
50%
Стали больше зарабатывать или получили повышение.

Сертификат, ссылками на который можно делиться с другими людьми

Получите сертификат по завершении

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Промежуточный уровень

Прибл. 7 месяца на выполнение

Около 8 ч/неделю

Русский

Субтитры: Русский

Специализация включает несколько курсов: 6

Курс1

Курс 1

Математика и Python для анализа данных

4.8
звезд
Оценки: 4,960
Рецензии: 822
Курс2

Курс 2

Обучение на размеченных данных

4.8
звезд
Оценки: 2,291
Рецензии: 301
Курс3

Курс 3

Поиск структуры в данных

4.7
звезд
Оценки: 1,345
Рецензии: 140
Курс4

Курс 4

Построение выводов по данным

4.7
звезд
Оценки: 927
Рецензии: 136

от партнера

Логотип Московский физико-технический институт

Московский физико-технический институт

Логотип Яндекс

Яндекс

Логотип E-Learning Development Fund

E-Learning Development Fund

Часто задаваемые вопросы

  • Когда вы оформите подписку, начнется семидневный бесплатный пробный период, в течение которого подписку можно отменить без штрафа. По истечении этого срока вы не сможете вернуть средства, но сможете отменить подписку в любой момент. Ознакомьтесь с нашей политикой возврата средств.

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Да, Coursera предоставляет финансовую помощь учащимся, которые не могут оплатить обучение. Чтобы подать заявление, перейдите по ссылке "Финансовая помощь" слева под кнопкой "Зарегистрироваться". Заполните форму заявления. Если его примут, вы получите уведомление. Обратите внимание: этот шаг необходимо выполнить для каждого курса специализации, в том числе для дипломного проекта. Подробнее

  • Когда вы регистрируетесь на курс, то можете получить доступ ко всем курсам в специализации. Кроме того, вы получаете сертификат о прохождении курса.Просто ознакомиться с содержанием курса можно бесплатно. Если стоимость обучения для вас слишком велика, вы можете подать заявку на финансовую помощь.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Эта специализация не приравнивается к зачету в университетах, однако некоторые вузы принимают сертификаты на свое усмотрение. Дополнительную информацию уточняйте в своем деканате.

  • Базовые знания математики и основ программирования.

  • Да, если вы хотите получить максимальную пользу от обучения, все курсы стоит проходить по порядку.

  • Идеальная цель нашей специализации — сделать так, чтобы слушатели могли пройти собеседование на позицию дата сайентиста уровня, соответствующего их профессиональному опыту. Вы освоите науку о данных и научитесь решать с помощью ее методов аналитические задачи — от сбора данных до построения оптимальной модели и оценки ее качества.

Остались вопросы? Посетите Центр поддержки учащихся.