Специализация: общие сведения

Недавно просмотрено: 2 898
The purpose of this series of courses is to teach the basics of Computational Statistics for the purpose of performing inference to aspiring or new Data Scientists. This is not intended to be a comprehensive course that teaches the basics of statistics and probability nor does it cover Frequentist statistical techniques based on the Null Hypothesis Significance Testing (NHST). What it does cover is: The basics of Bayesian statistics and probability Understanding Bayesian inference and how it works The bare-minimum set of tools and a body of knowledge required to perform Bayesian inference in Python, i.e. the PyData stack of NumPy, Pandas, Scipy, Matplotlib, Seaborn and Plot.ly A scalable Python-based framework for performing Bayesian inference, i.e. PyMC3 With this goal in mind, the content is divided into the following three main sections (courses). Introduction to Bayesian Statistics - The attendees will start off by learning the the basics of probability, Bayesian modeling and inference in Course 1. Introduction to Monte Carlo Methods - This will be followed by a series of lectures on how to perform inference approximately when exact calculations are not viable in Course 2. PyMC3 for Bayesian Modeling and Inference - PyMC3 will be introduced along with its application to some real world scenarios. The lectures will be delivered through Jupyter notebooks and the attendees are expected to interact with the notebooks.
Сертификат, ссылками на который можно делиться с другими людьми
Получите сертификат по завершении
Только онлайн-курсы
Начните сейчас и учитесь по собственному графику.
Гибкий график
Установите гибкие сроки сдачи заданий.
Начальный уровень
Ориентировочное время на прохождение: 3 месяца
Рекомендуемый темп: 4 ч/неделю
Английский
Сертификат, ссылками на который можно делиться с другими людьми
Получите сертификат по завершении
Только онлайн-курсы
Начните сейчас и учитесь по собственному графику.
Гибкий график
Установите гибкие сроки сдачи заданий.
Начальный уровень
Ориентировочное время на прохождение: 3 месяца
Рекомендуемый темп: 4 ч/неделю
Английский

О специализации

Пройти курсы

Специализация Coursera — это серия курсов, помогающих в совершенстве овладеть определенным навыком. Можно сразу записаться на специализацию или просмотреть курсы, из которых она состоит и выбрать тот, с которого вы хотите начать. Подписываясь на курс, который входит в специализацию, вы автоматически подписываетесь на всю специализацию. Можно завершить всего один курс, а потом сделать паузу в обучении или в любой момент отменить подписку. Отслеживайте свои курсы и прогресс на панели управления учащегося.

Практический проект

В каждой специализации есть практический проект, который нужно успешно выполнить, чтобы завершить специализацию и получить сертификат. Если для практического проекта в специализации предусмотрен отдельный курс, прежде чем начать его, необходимо завершить все остальные курсы.

Получите сертификат

Когда вы пройдете все курсы и завершите практический проект, вы получите сертификат, которым можно поделиться с потенциальными работодателями и коллегами.

Специализация включает несколько курсов: 3

Курс1

Курс 1

Introduction to Bayesian Statistics

Курс2

Курс 2

Bayesian Inference with MCMC

Курс3

Курс 3

Introduction to PyMC3 for Bayesian Modeling and Inference

от партнера

Placeholder

Databricks

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.