Специализация: общие сведения
Недавно просмотрено: 16,250

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Промежуточный уровень

Some programming experience and an interest in Clinical Data Science are required.

Прибл. 3 месяца на выполнение

Около 10 ч/неделю

Английский

Субтитры: Английский

Приобретаемые навыки

Implementation ScienceClinical Text MiningR ProgrammingComputational PhenotypingData Quality Assessment

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.

Гибкий график

Установите гибкие сроки сдачи заданий.

Промежуточный уровень

Some programming experience and an interest in Clinical Data Science are required.

Прибл. 3 месяца на выполнение

Около 10 ч/неделю

Английский

Субтитры: Английский

Специализация: принцип работы

Пройти курсы

Специализация Coursera — это серия курсов, помогающих в совершенстве овладеть определенным навыком. Можно сразу записаться на специализацию или просмотреть курсы, из которых она состоит и выбрать тот, с которого вы хотите начать. Подписываясь на курс, который входит в специализацию, вы автоматически подписываетесь на всю специализацию. Можно завершить всего один курс, а потом сделать паузу в обучении или в любой момент отменить подписку. Отслеживайте свои курсы и прогресс на панели управления учащегося.

Практический проект

В каждой специализации есть практический проект, который нужно успешно выполнить, чтобы завершить специализацию и получить сертификат. Если для практического проекта в специализации предусмотрен отдельный курс, прежде чем начать его, необходимо завершить все остальные курсы.

Получите сертификат

Когда вы пройдете все курсы и завершите практический проект, вы получите сертификат, которым можно поделиться с потенциальными работодателями и коллегами.

how it works

Специализация включает несколько курсов: 6

Курс1

Introduction to Clinical Data Science

4.7
Оценки: 71
Рецензии: 23

This course will prepare you to complete all parts of the Clinical Data Science Specialization. In this course you will learn how clinical data are generated, the format of these data, and the ethical and legal restrictions on these data. You will also learn enough SQL and R programming skills to be able to complete the entire Specialization - even if you are a beginner programmer. While you are taking this course you will have access to an actual clinical data set and a free, online computational environment for data science hosted by our Industry Partner Google Cloud. At the end of this course you will be prepared to embark on your clinical data science education journey, learning how to take data created by the healthcare system and improve the health of tomorrow's patients.

...
Курс2

Clinical Data Models and Data Quality Assessments

4.4
Оценки: 17
Рецензии: 4

This course aims to teach the concepts of clinical data models and common data models. Upon completion of this course, learners will be able to interpret and evaluate data model designs using Entity-Relationship Diagrams (ERDs), differentiate between data models and articulate how each are used to support clinical care and data science, and create SQL statements in Google BigQuery to query the MIMIC3 clinical data model and the OMOP common data model.

...
Курс3

Identifying Patient Populations

4.8
Оценки: 12
Рецензии: 3

This course teaches you the fundamentals of computational phenotyping, a biomedical informatics method for identifying patient populations. In this course you will learn how different clinical data types perform when trying to identify patients with a particular disease or trait. You will also learn how to program different data manipulations and combinations to increase the complexity and improve the performance of your algorithms. Finally, you will have a chance to put your skills to the test with a real-world practical application where you develop a computational phenotyping algorithm to identify patients who have hypertension. You will complete this work using a real clinical data set while using a free, online computational environment for data science hosted by our Industry Partner Google Cloud.

...
Курс4

Clinical Natural Language Processing

This course teaches you the fundamentals of clinical natural language processing. In this course you will learn practical techniques for extracting information stored in text-based portions of electronic medical records.

...

Преподаватели

Avatar

Laura K. Wiley, PhD

Assistant Professor
Division of Biomedical Informatics and Personalized Medicine, Anschutz Medical Campus
Avatar

Michael G. Kahn, MD, PhD

Professor of Clinical Informatics
Department of Pediatrics, Anschutz Medical Campus

Партнеры курса

Industry Partner Logo #0

О Система университетов штата Колорадо

The University of Colorado is a recognized leader in higher education on the national and global stage. We collaborate to meet the diverse needs of our students and communities. We promote innovation, encourage discovery and support the extension of knowledge in ways unique to the state of Colorado and beyond....

Часто задаваемые вопросы

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Unfortunately at this time we can only allow students who have access to Google services (i.e., a gmail account) to complete the specialization. This is because we give students access to real clinical data and our privacy protections only allow data sharing through the Google BigQuery environment.

  • The specialization will take approximately 6 months to complete. However students can take the specialization at their own pace.

  • Some experience or awareness of programming and statistical concepts are helpful. However, Course 1 - Introduction to Clinical Data Science, provides learners with enough training in SQL and R to complete the specialization.

  • We highly recommend that you take Course 1 - Introduction to Clinical Data Science, first as it is meant to provide basic training and information useful for Courses 2-6. Although you may take Course 2-6 in any order, it may be helpful to take them sequentially.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more. Additionally, certification in this specialization may enhance professional credentials and attribute to new jobs, salary increases, or promotions.

Остались вопросы? Посетите Центр поддержки учащихся.